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Abstract
We conducted a thorough literature survey on topics relevant to assured PNT for auto-
mated vehicles. The presented literature gathers and systematizes existing knowledge
related to the system components of PNT and HAV systems. In particular, it treats op-
portunities, threats, and vulnerabilities related to (1) inertially-coupled GNSS receivers,
(2) non-GNSS radio navigation via signals of opportunity (SOPs) and dedicated terrestrial
beacons, (3) radar, lidar, and vision systems, (4) communications between vehicles and
data/computation stored in cloud and edge servers, and (5) cooperative sensing: commu-
nication between vehicles and other traffic participants and infrastructure. This literature
review also focuses on analyzing, (6) multi-sensor fusion strategies, attacks, detection,
and mitigation mechanisms as found in the literature focusing on ground and aerial vehi-
cles.

We have summarized a series of prior survey articles and book chapters that we have iden-
tified as the state of the art in recent years, including the definitive book chapter on GNSS
interference written by Humphreys, and the definitive book chapter on GNSS spoofing and
detection co-authored by Humphreys. We categorized and systematized the evaluation of
top strategies for GNSS authentication and GNSS resilience by extending the approach
that Humphreys. We have extended this work to include GNSS spoofing defenses and
attacks introduced since 2016, such as the flexible multi-antenna meaconing attack and
NovAtel’s layered defense, as well as GNSS denial of service (jamming). We have iden-
tified the schemes for GNSS signal authentication and resilience that are well suited to
implementation on highly automated vehicles (HAVs), such as those that exploit inertial
sensing, multiple antennas, and signal quality monitoring.

We have identified terrestrial and LEO satellite signals of opportunity (SOPs) that could
provide PNT for ground and aerial HAVs, with a focus on SOP-derived PNT integrity, avail-
ability, accuracy, and security. We have studied PNT security, continuity, and resiliency
of dedicated terrestrial beacons (e.g., NextNav), which could be well suited to play a role
as a GNSS backup for future HAVs.

HAVs, whether ground, aerial, or maritime, depend crucially on RADAR, LiDAR, and vision
systems for collision avoidance and PNT. The use and performance of these technologies
have been extensively covered in the literature, but their PNT impacts have seen little
scrutiny. We have reviewed the RADAR, LiDAR, and vision literature, points out gaps in
current knowledge, and develops studies within the CARMEN UTC to address these gaps.

High-definition (HD) maps stored in cloud or edge servers are a key asset for HATS: they
enable vehicles to “expect the expected” in route planning and perception. These maps
are essential for PNT because local sensing data are compared against them for local-
ization. We have assessed the vulnerability of vehicles to disruption or manipulation of
vehicle-to-cloud/edge communication.

Cooperative sensing is a paradigm in which multiple vehicles and infrastructure exchange
sensor data in real time to amplify each vehicle’s situational awareness. Low-rate V2X
protocols, such as DSRC, are capable of exchanging fully-digested situational estimates,

v



Literature Review of PNT and GNSS Threats and Vulnerabilities to HATS

such as vehicle poses, velocities, and hazard alerts. But to enable fuller situational aware-
ness, a broader data-sharing regime is necessary, one that exchanges raw sensor data
such as images, radar and lidar returns, and GNSS observables. We have assessed coop-
erative sensing opportunities and risks, including cooperatively derived PNT. An example
of sensing opportunities and risks is shown in Figure 12

Multi-sensor fusion is the process of combining information from multiple sensors to pro-
duce a more accurate and comprehensive understanding of a situation or environment. In
the context of security and defense, this can be used to improve the accuracy of surveil-
lance and detection systems, for example by combining data from GNSS, INS, radar,
cameras, and other sensors to track and identify potential threats.

Stealthy methods for attacking multi-sensor fusion systems involve techniques that aim
to evade or deceive these systems without being detected. By disrupting or manipulating
the data from one or more of these sources, an attacker could potentially create confusion
or uncertainty in the fused data, making it more difficult for the system to accurately track
or identify potential threats. As such, it is important for designers and operators of multi-
sensor fusion systems to be aware of these potential attack vectors and take steps to both
detect and mitigate these threats.

Our work has included USDOT guidance on PNT and existing information on GNSS vul-
nerabilities and integrity from publicly-available work from DoD, particularly as it relates
to antenna systems and anti-jam techniques. Besides summarizing the state-of-the-art in
these various categories, our review also identified the gaps in the current knowledge and
practice.
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2 Vulnerabilities, Threats, and Mitigation Directly Affect-
ing GNSS Devices

Highly automated transportation systems rely on a steady stream of signals and informa-
tion from external sources for localization, route planning, perception, and general situ-
ational awareness. This includes reliance on positioning, navigation, and timing (PNT)
information: Location is essential for autonomous navigation and planning; and accurate
timing is a precondition for on-board sensor fusion, cooperative control, and manage-
ment based on information from other vehicles or the infrastructure. It is crucial to identify
schemes for GNSS signal authentication and resilience that are well-suited for highly au-
tonomous vehicles (HAVs). HAVs require PVT sensing techniques that are resilient to
unusual natural or accidental events and secure against deliberate attack.

GNSS will no doubt play a significant role in PNT for HAVs, as GNSS is the only positioning
system that offers absolutely-referenced meter-level accuracy with global coverage and
all-weather operation. Furthermore, carrier-phase differential GNSS (CDGNSS), whose
real-time variant for mobile platforms is commonly known as real-time kinematic (RTK)
GNSS, is a centimeter-accurate positioning technique that differences a receiver’s GNSS
observable with those from a nearby fixed reference station to eliminate most sources of
measurement error. The trouble is that GNSS is fragile: the harsh multi-path and signal
blockage conditions of the urban ground vehicle environment often result in degraded
position estimation. Furthermore, GNSS is susceptible to deliberate attack, as its service
is easily denied by jammers, or deceived by spoofers. Fig. 1 provides an overview of
different types of radio frequency (RF) interference the GNSS receiver on an HAV may
encounter.

RF Inter-
ference

Narrow-
band

Wideband

Matched
Spectrum

Spoofing

Data/Time
Spoofing

Meaconing

Multi-
Channel

Meaconing

SCER

Nulling

Matched
Code

Jamming

Natural
Interference

Figure 1: A taxonomy of RF interference threats to GNSS receivers.

Fortunately, significant advancements in PNT resiliency have been made over the past two
decades. Fig. 2 shows a taxonomy of defenses against GNSS interference that HAVs may
wish to employ. The first type of defense is GNSS hardening. The idea of GNSS hardening
is to toughen the GNSS receiver against interference specific to GNSS. At the core of
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GNSS-hardened systems is inertial navigation, which is a ubiquitous pairing alongside
GNSS receivers. Inertial Measurement Units (IMU) are impervious to RF interference and
signal blockage. Tightly coupling GNSS receivers with IMUs enable precise navigation in
challenging multi-path environments and provide a powerful defense against spoofing.

The next strategy for PNT resiliency is augmenting GNSS. Traditional GNSS has been
brilliantly successful, yet for some applications, they remain inadequate with regard to
the accuracy, constellation survivability, or robustness to interference—for both civil and
military users. To address these limitations, several alternative augmentation systems
have been investigated such as: (1) Vision-based; (2) Radar-based; (3) terrestrial radio
navigation systems (TRNS); (4) Communication systems; (5) LEO PNT; and (6) Signals
of Opportunity. These alternate sensors can be either coupled with GNSS or operate as
stand-alone PNT solutions in GNSS-denied environments.

Finally, the last form of PNT resiliency is spectrum situational awareness (SSA). Interfer-
ence can present itself anywhere across the RF spectrum as attackers can target any
subsystem of sensors on the HAV (e.g. GNSS receiver and FMCW radar). Identifying
when and where a receiver is affected by interference is an important first step toward
locating and mitigating the interference itself.

Resilient
PNTGNSS

Hardening

Receiver
Development

[1, 2]

Natural
Interference
Mitigation

[3]

Jamming
and Spoofing

Defense
[4]

Augmentation
Systems

Vision

Radar

Terrestrial
Radionavigation

Systems
[5, 6, 7]

Communication
Systems

[8]

LEO PNT
[9]

Signals of
Opportunity

Spectrum
Situational
Awareness

Interference
Monitoring
from LEO
[10, 11]

Radar
Interference

Figure 2: A taxonomy of defenses against RF interference. The cited papers were developed under CAR-
MEN.

2.1 GNSS Hardening

A typical IMU comprises triad accelerometers and a triad of gyroscopes to capture the
three-dimensional motion of the platform to which it is mounted. The accelerometers are
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Figure 3: Relationship between scale factor stability and bias stability of different gyroscopes [12].

used to sense the specific forces or accelerations, while the gyroscopes are used to mea-
sure the angular rate of the platform’s rotations, which are used to transform the sensed
accelerations into a navigation frame. In principle, navigation based on IMU measure-
ments only will be attained by integrating the accelerations over time with the knowledge
of the initial positions and velocities of the platform.

Technologies for IMU sensors have evolved from pure mechanic-based technology to
more advanced ones. Nowadays, accelerometers are typically based on mechanical
pendulous, vibratory fiber optic, vibrating quartz, surface acoustic wave (SAW), and sil-
icon. Similarly, current gyroscopes include mechanical gyroscopes, Ring Laser Gyro-
scopes (RLG), Fiber-Optic gyroscopes (FOG), Quartz, Dynamically Tuned Gyroscopes
(DTG), Rate and Integrating Gyroscopes and Micro-Electro-Mechanical Systems (MEMS)
[12, 13].

As with other measurement devices, IMU sensors also have some systematic and random
errors. Systematic errors of the inertial sensors include bias, scale factor, scale factor
non-linearity, and cross-coupling. A bias is a constant shift in the measured quantity from
the actual input to the sensor. Whereas, a scale factor is an error that represents the
mismatch between the input quantity and the reported output quantity of the sensor. Scale
factor non-linearity refers to the effects of some environmental impacts and sensor designs
that cause the scale factor to be no longer linear. Cross-coupling is caused by the non-
orthogonality of the sensitive axes of inertial sensors. Random errors are acting as noises
in the measurements [14, 13].

An illustration of the relationship between bias stability and scale factor stability of different
gyroscopes in different application scenarios is shown in Figure 3 [12].
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There is no universally agreed definition for categorizing inertial sensors [15]. Meanwhile,
IMU sensors are roughly categorized into different grades per their performance, accuracy,
and application scenarios. [16] categorizes IMU sensors into strategic, navigation, and
tactical grades as in table 1. In [12], the tactical grade is classified further into high-end
and low-end, and a consumer-grade is added as in table 2. A commercial grade, also
called an automotive grade, is added in [13] as in table 2. From these tables, it can be
found that some overlaps and mismatches exist in different categorizations.

Table 1: Specifications of the IMU sensors for different grades [16]

Gyroscope Accelerometer
Grade Bias [°/h] SF [ppm] Bias [µg] SF [ppm]
Strategic <0.0001 <50 <1 <2
Navigation 0.0001-0.1 1-100 1-1000 1-100
Tactical 0.1-10000 >100 50-10000 >100
SF: Scale factor

Table 2: Bias stability of different grades of gyroscopes [12]

Grade Bias [°/h] Technology Application
Strategic 0.0001–0.01 RLG/FOG Submarine navigation
Navigation 0.01-0.1 RLG/FOG Aeronautics navigation
High-end Tactical 0.1–1 RLG/FOG Missile navigation
Tactical 0.1–30 FOG/RLG Platform stabilization
Industrial & 1–30 MEMS Ammunition &

Low-end tactical rocket guidance
Consumer 30-1000 MEMS Motion interface

The integration of GNSS and IMU can be implemented in loosely coupled, tightly coupled,
and deeply coupled modes. In loosely coupled mode, GNSS and inertial sensors individ-
ually process their raw measurements to obtain the navigation solution for each system;
the final navigation solution and the inertial sensor errors are determined by fusing the two
individual navigation solutions together. In tightly coupled mode, the GNSS and inertial
sensors process their raw measurements simultaneously and optimally to estimate the
position, velocity, and orientation of the platform together with the inertial sensor errors in
a single filter. In deeply coupled mode, the integrated navigation solution is fed back to
predict the code and carrier-phase pseudo-ranges of the GNSS receiver to aid the carrier
tracking loops in the high-dynamic or jamming environments [17].

Hardening GNSS receivers against natural and deliberate interference is paramount for
the safe and reliable operation of HAVs. The core of GNSS-hardened systems is iner-
tial navigation, which is virtually impervious to radio frequency (RF) interference, poor
weather, signal blockage, and data ambiguity. Inertial sensors are central to low-cost
ground-vehicle robustness against natural and deliberate interference. Incorporating mea-
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surements from an inertial measurement unit (IMU) is a natural solution to bridge avail-
ability gaps in urban CDGNSS due to the adverse signal environment.

Furthermore, inertial systems provide the basis for sensitive GNSS spoofing detection.
IMU-based GNSS spoofing detection capitalizes on a simple but consequential observa-
tion: it is practically impossible for a spoofer to create a false ensemble of GNSS signals
whose carrier phase variations when received through the antenna of a target ground ve-
hicle, track the phase values predicted by inertial sensing. In other words, antenna motion
caused by road irregularities, or rapid braking, steering, etc., is sensed with high fidelity by
an onboard IMU but is unpredictable at the sub-cm level by a would-be spoofer. There-
fore, the differences between IMU-predicted and measured carrier phase values offer the
basis for an exquisitely sensitive GNSS spoofing detection statistic.

The UT Radio Navigation Lab (RNL) has made strides in Software-Defined Radio (SDR)
developments for GNSS. [1] proposes a framework for structuring data bit transfers from
the radio frequency (RF) front-end to a General-Purpose Processor (GPP) in SDR for
Global Navigation Satellite System (GNSS) applications. With the evolution of multi-
antenna and multi-frequency GNSS SDRs, the packing and unpacking of data bits be-
tween the RF front-ends and GPP becomes increasingly complicated. ION’s Metadata
Standard provides a foundation for standardizing GNSS SDR output files but does not
accommodate data packing formats that are efficient for processing by an important class
of SDRs are called bit-wise SDRs. Besides proposing an extension to the ION Metadata
Standards that resolve this shortcoming, this paper treats the problem of bit-packing for
bit-wise SDRs more generally: It develops a bit-packing scheme that is flexible enough to
accommodate any practical combination of antennas, frequency bands, sampling rates,
and quantization encodings while optimizing bit-wise SDR processing efficiency within the
constraints of low-cost front-end hardware. The performance of the proposed scheme
is presented in terms of reduced instructions per processed sample. Performance is
validated experimentally by implementing the proposed scheme on a high-performance
GNSS SDR whose dual-antenna, tri-band RF front-end was recently developed in house
at the University of Texas Radio Navigation Laboratory.

[2] explores how advancements in computer processing, both in a single instruction, mul-
tiple data (SIMD), and multi-core technology, have shaped the growth of software-defined
Global Navigation Satellite Systems (GNSS) receivers. Historically, GNSS software-defined
radio (SDR) has been limited to research and development purposes. But now, modern
processor architectures and instruction sets are particularly efficient, paving the way for
more capable SDR. GRID, the GNSS SDR developed in the Radio navigation Lab, has re-
cently achieved a remarkable inflection point: under some processing configurations, the
correlation operation, by which each channel’s signal is mixed to baseband and de-spread
via multiplication against a local code replica, is no longer the bottleneck process. This im-
portant milestone in pure software-defined GNSS makes SDR is a formidable competitor
against traditional mass-market application-specific integrated circuit (ASIC)-based GNSS
receivers. Further, this paper offers an exploration of commercial use cases particularly
well-suited for GNSS SDR: space applications, wall-mounted electronic technologies, and
automated vehicles. In detailing the status of GRID and its various applications, this pa-
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per presents the case that software-defined GNSS is ready for launch for mass market
applications, rather than solely a tool for research and development.

Advancements in precise positioning in deep urban environments were made in [3]. A ve-
hicular pose estimation technique is presented that tightly couples multi-antenna carrier-
phase differential GNSS (CDGNSS) with a low-cost MEMS inertial sensor and vehicle
dynamics constraints. This work is the first to explore the use of consumer-grade inertial
sensors for tightly-coupled urban CDGNSS, and first to explore the tightly-coupled com-
bination of multi-antenna CDGNSS and inertial sensing (of any quality) for urban naviga-
tion. An unscented linearization permits ambiguity resolution using traditional integer least
squares while both implicitly enforcing known-baseline-length constraints and exploiting
the multi-baseline problem’s inter-baseline correlations. A novel false fix detection and
recovery technique is developed to mitigate the effect of conditioning the filter state on
incorrect integers. When evaluated on the publicly-available TEX-CUP urban positioning
data set, the proposed technique achieves, with the consumer- and industrial-grade in-
ertial sensors, respectively, a 96.6% and 97.5% integer fix availability, and 12.0 cm and
10.1 cm overall (fix and float) 95th percentile horizontal positioning error.

GNSS security was enhanced in [4], where the authors developed, implemented, and
validated a powerful single-antenna carrier-phase-based test to detect GNSS spoofing at-
tacks on ground vehicles equipped with a low-cost IMU. This spoofing detection technique
capitalized on the carrier phase fixed-ambiguity residual cost produced by a well-calibrated
carrier-phase-differential GNSS (CDGNSS) solution that is tightly coupled with a low-cost
IMU. The finer movements of the vehicle, such as slight steering movements and road
vibrations, are the necessary unpredictable dithering a spoofer is not able to replicate.
The differences between IMU-predicted and measured carrier phase values offer the ba-
sis for an exquisitely sensitive GNSS spoofing detection statistic. It is demonstrated that
high-sensitivity spoofing detection is possible despite integer folding and urban multi-path.
Artificial challenging spoofing attacks were injected into a data set collected by a vehicle-
mounted sensor suite and detected within two seconds. This level of sensitivity to spoofing
with only a single antenna and low-cost IMU is unprecedented. The type of tightly-coupled
IMU-GNSS estimator whose by-products the proposed detection technique exploits is not
currently available on commercial passenger vehicles but can be expected to be adopted
in future automated vehicles since it provides all-weather dm-level absolute positioning at
a minimal financial burden.

The following section outlines schemes for GNSS hardening and signal authentication
that are well suited to implementation on HAVs. The GNSS hardening techniques are
presented in the following order: (1) GNSS Receiver Development; (2) Natural Interfer-
ence Mitigation; and (3) GNSS Jamming and Spoofing Defenses.
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2.1.1 GNSS Receiver Development:

Software-defined GNSS, in which all GNSS receiver signal processing downstream of
sampling and quantization is performed on a general-purpose processor rather than an
ASIC or FPGA, has seen its fortunes rise, fall, and rise again over the past quarter century.
In 1996, GPS pioneer Philip Ward pronounced software-defined GNSS dead on arrival:
“It is unlikely that the speed-power product of general purpose digital signal processors
will make them the suitable choice to perform the code and carrier wipe-off function in the
near future, perhaps never” [18]. The only GNSS SDR at the time was Dennis Akos’s
GPS/GLONASS SDR, which featured a novel front-end design that permitted sampled
data collection and storage, but did not have the computational power to continuously
track GNSS signals in real-time [18]. In 1999, the first GNSS SDR that operated in “real-
time” operation emerged from Akos and co-authors in [19], which was able to process 60
seconds of IF data in 55 seconds. This effort was a notable achievement in the history
of the GNSS SDR. In 2004, Brent Ledvina and co-authors presented the first real-time
dual-frequency (L1 C/A, L2C) software-defined GPS receiver, which supported 10 tracking
channels [20]. 2007 was a banner year for GNSS SDR: Cambridge Silicon Radio spent
$75M to buy NordNav, a Swedish company that had developed a software-defined GNSS
receiver for use in cell phones and other embedded applications. CSR’s purchase sparked
great commercial interest in SDR technology. But the marginal power draw increase due
to the NordNav SDR solution, although remarkably low for an SDR, was still too high for
mass market cell phones. On this realization, CSR mothballed the NordNav software,
opting instead to buy SiRF, which offered a high-performance, low-power, ASIC-based
solution.

By 2016, embedded processing power had become more efficient. In that year, Trimble
rolled out a software-defined GNSS receiver called Catalyst for widespread commercial
use. The Trimble Catalyst SDR consumed digitized data from a radio frequency (RF)
front-end which was embedded in a handheld antenna (DA1). The SDR harnessed the
processing power of a smartphone or tablet to compute a user’s position and time. DA2,
Trimble’s second-generation Catalyst product, now bundles a processor with the antenna
to relieve the burden on the phone, but the solution remains software-defined and thus
maintains the attractive flexibility of GNSS SDR [21].

Now in 2022, advancements in processor speeds and parallel instructions and architec-
tures have unlocked expanded possibilities. The following sections detail the current sta-
tus and performance of a state-of-the-art software-defined GNSS receiver, GRID. The
GRID receiver exploits parallelism at multiple levels of operation: (1) it performs corre-
lation using the bit-wise parallel technique developed by Psiaki and Ledvina [22], (2) it
supports hundreds of channels in real-time by distributing processing across multiple gen-
eral purpose cores [23], and (3) it makes full use of single-instruction multiple-data (SIMD)
instructions to accelerate correlation arithmetic and bit manipulation.

Harnessing the latest SIMD instruction sets, GRID’s performance has recently achieved a
remarkable inflection point: under some processing configurations, the correlation opera-
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tion is no longer the bottleneck process. This represents a major milestone for software-
defined GNSS: the very operation that Philip Ward warned in 1996 that could make general-
purpose processors perpetually unsuitable for GNSS signal processing is now so effi-
ciently implemented that it requires less then half the computational resources. GRID
has become more capable and power-lean GNSS SDR by leveraging these technological
advancements.

GNSS SDR from its inception has been a valuable platform and tool for research and
development (R&D). Efficient, low-power, low-cost multi-core processors developed for
smartphones, together with new algorithms tailored to exploit parallelism, have now made
GNSS SDRs ready for widespread commercial use, not just for R&D. Some commercial
uses for which GNSS SDR is particularly well-suited for our space- and aerial applica-
tions, wall-mounted electronic technologies, automated vehicles, and a host of emerging
technologies that require a high-performance GNSS solution.

[2] provides a comprehensive description of the state-of-the-art in pure GNSS SDR based
on bit-wise parallel correlation, an explanation of how modern processor architectures
and instruction sets have led to an inflection point in which correlation is no longer the
processing bottleneck, and an exploration of use cases particularly well suited for GNSS
SDR.

Within the past decade, software-defined radios (SDRs) have emerged as an especially
valuable platform for GNSS research and development [24]. GNSS-SDRs implementa-
tions vary greatly but are characterized by processing more-or-less-raw samples of radio
frequency (RF) data from an analog front-end using general-purpose processors, either
online (i.e. in real-time) or offline (i.e. post-processing). Because they enable researchers
to collect and share large raw-sample data sets, GNSS SDRs are an ideal tool for collab-
oration and repeatable, high-fidelity cross-verification within the GNSS community.

The lack of a standardized data format for raw RF data previously stymied this process.
Properly importing a data set into a software package different from that used for the
original recording could be error-prone and tedious. To tackle this problem, the Institute of
Navigation (ION) GNSS SDR Standard Working Group recently released their GNSS SDR
Metadata Standard [25]. The Standard defines the structure of a machine- and human-
readable auxiliary file to be distributed alongside raw-sample data sets. The introduction
of this “metadata” is a much-welcomed initiative that promises to eliminate formatting am-
biguities and promote interoperability in GNSS-SDR research. Not all GNSS-SDR imple-
mentations have quite the same requirements for their data formats. GNSS SDRs with
software correlators may be sub-divided into byte-wise and bit-wise categories. Byte-wise
SDRs represent each real or imaginary component of a front-end sample as a byte (e.g.,
the MuSNAT and the IFEN SX3 [26, 27]). As the smallest directly-addressable unit of
computer memory and the smallest supported integer data type on most modern architec-
tures, bytes represent an inflection point in software complexity. Operations on narrower
quantization are less straightforward to implement.

Why might narrower quantization be desirable? The weak nature of GNSS signals-in-
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space and the typical hemispherical pattern of GNSS receiver antennas mean that as
much as 99% of the power in a recorded GNSS-SDR waveform is additive white Gaussian
noise (AWGN). At such a low signal-to-noise ratio (SNR), the formal information content
of the desired signal cannot exceed a small fraction of a bit per sample. The bulk of the
data set is noise. Bit-wise SDRs exploit the uneven distribution of this fraction-of-a-bit of
useful information among the output bits of the analog-to-digital converter (ADC). Under
these conditions, there are diminishing returns to each bit of quantization after the first.
Bit-wise SDRs, therefore, truncate samples, sometimes to a single bit, to reduce memory
bandwidth and power consumption (e.g., the UT Austin GRID SDR [28, 29, 23, 30]).

Version 1.0 of the Standard does not support the data formats that are most efficient for
bit-wise SDR processing: those in which parallel planes of bits (e.g. sign bits, magni-
tude bits) from a single stream of RF, samples are aggregated (grouped into runs) rather
than collated (interleaved). This renders two recently-offered public GNSS data sets, the
University of Texas Challenge for Urban Positioning (TEX-CUP) [31], and the ATX Urban
Positioning Challenge Data set [30], incompatible with the Standard. [1] proposes exten-
sions to the Standard to improve compatibility with bit-wise SDRs.

Why should such an unusual bit-ordering be valuable? Since modern processors do not
offer native arithmetic on data types smaller than a byte, bit-wise SDRs rely instead on
“bit-slicing”: a digital logic circuit (AND, OR, NOT, XOR) for correlation is designed and
implemented as a program with one Boolean instruction per gate. Each wire in the logic
circuit is represented by a register-sized integer (a “word”), and the nth bit of one word
interacts only with the nth bits of other words: that is, parallel bits flow through separate,
parallel copies of the logic circuit. The correlator, therefore operates on as many samples
in parallel as there are bits in a word. It is this mapping of logical wires to register-sized
integers that leads to the bit-ordering preferences of bit-wise SDRs. Just as a 2 × 2-bit
adder circuit uses distinct wires for high and low bits, the bit-sliced implementation uses
different registers and memory locations to hold (corresponding vectors of) high and low
bits. What would be a single instruction (multiply and add bytes) in a byte-wise SDR
becomes many instructions; but data parallelism is fully exploited, critical paths are short,
and the processor can be kept busy with many inexpensive Boolean operations. Bit-slicing
is simplest when the depth of quantization is just one or two bits, but the technique does
not have a strict limit.

[1] lays out proposed extensions to the Standard in concrete detail for encoding arbitrary
packing of raw GNSS data sampled from potentially multiple antennas, frequency bands,
quantization schemes, and sample rates. Additionally, [1] presents a scheme for efficient
packing and unpacking of GNSS data streams. This scheme automatically generates
compact packing logic and fast unpacking code from a description of the packed data
format. Experimental results on x86-64 and ARM64 architectures demonstrate the tools’
efficiency and flexibility.

Both bit-wise and byte-wise GNSS-SDR implementations exploit vectorized processor in-
structions, known as Single Instruction, Multiple Data (SIMD). SIMD instructions are ideal
for calculations with high data parallelism, such as correlation, because they operate on
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multiple samples in the same cycle. Typical vector register sizes range from 128 to 512
bits, though the largest sizes are not available on all processors. Most x86-64 processors
outside of data centers, for instance, support up to 256-bit vector operations, while modern
64-bit ARM processors typically support only 128-bit SIMD instructions.

Depending on the CPU’s particular SIMD instruction set, byte-wise SDRs can multiply and
accumulate 16 samples per cycle per core [23], and bit-wise SDRs can multiply and accu-
mulate 128 samples per core using a short sequence of SIMD XOR, popcount, and table
look-up operations [22, 32, 33, 23]. The required memory bandwidth is lesser for bit-wise
SDRs than for byte-wise SDRs. On the other hand, byte-wise SDRs eliminate quanti-
zation losses and are more easily adapted for use with non-binary modulation schemes
like CBOC. Moreover, under non-AWGN conditions, greater quantization depth may be
beneficial for e.g. adaptive notch filtering [34].

While graphics processing units (GPUs) might appear to be a compelling alternative, with
their support for a stupendous amount of data-parallel computation in integer or floating-
point formats [35], they suffer from high overhead in GPU/CPU communication and are
therefore of the greatest use in the search phase of signal acquisition rather than during
tracking.

2.1.2 Natural Interference Mitigation:

Future Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) connectivity will per-
mit vehicles to relay their positions and velocities to each other with millisecond latency,
enabling tight coordinated platooning and efficient intersection management. More am-
bitiously, broadband V2V and V2I enabled by 5G wireless networks will permit vehicles
to share unprocessed or lightly-processed sensor data. Ad-hoc networks of vehicles and
infrastructure will then function as a single sensing organism. The risk of collisions, espe-
cially with pedestrians and cyclists—notoriously unpredictable and much harder to sense
reliably than vehicles—will be significantly reduced as vehicles and infrastructure con-
tribute to sensor data from multiple vantage points to build a blind-spot-free model of their
surroundings.

Such collaborative sensing and traffic coordination require vehicles to know and share
their own position. How accurately? The proposed Dedicated Short Range Communica-
tions (DSRC) basic safety message, a first step in V2V coordination, does not yet define a
position accuracy requirement, effectively accepting whatever accuracy a standard GNSS
receiver provides [36]. But automated intersection management [37], tight-formation pla-
tooning, and unified processing of sensor data—all involving vehicles of different makes
that may not share a common map—will be greatly facilitated by globally-referenced po-
sitioning with sub-30-cm accuracy.

Poor weather also motivates high-accuracy absolute positioning. Every automated vehi-
cle initiative of which the present authors are aware depends crucially on lidar or cameras
for fine-grained positioning within their local environment. But these sensing modalities
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perform poorly in low-visibility conditions such as a snowy whiteout, dense fog, or heavy
rain. Moreover, high-definition 3D maps created with lidar and camera data, maps that
have proven crucial to recent progress in reliable vehicle automation, can be rendered
dangerously obsolete by a single snowstorm, leaving vehicles that rely on such maps
for positioning no option but to fall back on GNSS and radar to navigate a snow-covered
roadway in low-visibility conditions. When, as is often the case on rural roads, such snowy
surroundings offer few radar-reflective landmarks, radar too becomes useless. GNSS re-
ceivers operate well in all weather conditions, but only a highly accurate GNSS solution,
e.g., one whose absolute errors remain under 30 cm 95% of the time, could prevent a ve-
hicle’s drifting onto a snow-covered road’s soft shoulder. Code-and Doppler-based GNSS
solutions can be asymptotically accurate (averaged over many sessions) to better than 50
cm, which may be adequate for digital mapping [38], but they will find it challenging to meet
a 30 cm 95% stand-alone requirement, even with modernized GNSS offering wide-band
signals at multiple frequencies.

Carrier-phase-based GNSS positioning—also referred to as precise GNSS positioning
even though it actually offers absolute accuracy, not just precision (repeatability)—can
meet the most demanding accuracy requirements envisioned for automated and con-
nected vehicles, but has historically been either too expensive or too fragile, except in
open areas with a clear view of the overhead satellites, for widespread adoption. Coupling
a carrier-phase differential GNSS (CDGNSS) receiver with a tactical grade inertial sensor,
as in [39, 40, 41, 42] enables robust high-accuracy positioning even during the extended
signal outages common in dense urban areas. But GNSS-inertial systems with tactical-
grade inertial measurement units (IMUs) cost tens of thousands of dollars and have proven
stubbornly resistant to commoditization. Coupling a GNSS receiver with automotive- or
industrial-grade IMUs are much more economical, and significantly improve performance,
as shown in [43]. But such coupling only allows approximately 5 seconds of complete
GNSS signal blockage before the IMU no longer offers a useful constraint for so-called
integer ambiguity resolution [44], which underpins the fastest, most accurate, and most
robust CDGNSS techniques, namely, single-baseline RTK, network RTK, and PPP-RTK
[45, 46].

Previous research has suggested an inexpensive technique for robustifying RTK position-
ing: tightly coupling carrier-phase-based GNSS positioning with inertial sensing and vision
[47, 48]. Such coupling takes advantage of the remarkable progress in high-resolution,
low-cost cameras within the intensely competitive smartphone market. The current au-
thors are engaged in developing a high-integrity RTK-vision system for high-accuracy ve-
hicular positioning in rural and urban environments. Further coupling with radar will make
the system robust to low-visibility conditions.

As a step toward this goal, it is of interest to evaluate the performance of stand-alone RTK
techniques—those unaided by IMUs, odometry, or vision—in urban environments. Such
a study will reveal why and when aiding is necessary, and how an RTK positioning system
might behave if aiding were somehow impaired or unavailable, whether due to sensor
faults or, in the case of exclusive visual aiding, poor visibility conditions.
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Little prior work has explored unaided vehicular RTK performance in urban environments,
no doubt because performance results have historically been dismal. Short-baseline RTK
experiments between two vehicles in [49] revealed that multi-frequency (L1-L2) GPS and
GLONASS RTK yielded poor results in residential and urban environments. Only along
a mountain highway with a relatively clear view of the sky was the availability greater
than 90% and accuracy better than 30 cm. RTK positioning in downtown Calgary was
disastrous, with less than 60% solution availability and RMS errors exceeding 9 meters.

More recently, Li et al. [43] have shown that, with the benefit of greater signal availability,
unaided professional-grade dual-frequency GPS + BDS + GLONASS RTK can achieve
correct integer fixing rates of 76.7% on a 1-hour drive along an urban route in Wuhan,
China. But Li et al. do not provide data on the incorrect fixing rate, nor a full error distri-
bution, so the significance of their results is difficult to assess.

Recent urban RTK testing by Jackson et al. [50] indicates that no low-to-mid-range con-
sumer RTK solution offers greater than 35% fixed (integer-resolved) solution availability
in urban areas, despite a dense reference network and dual-frequency capability. A key
failing of existing receivers appear to be their slow recovery after passing under bridges
or overpasses.

[30] describes and evaluates an unaided RTK positioning system that has been designed
for vehicular operation in both rural and urban environments. Preliminary performance
results were published in a conference version of this paper [51]. The current paper im-
proves on the conference version in four ways: (1) the test route is both more challenging
and more comprehensive, (2) a proper independent ground truth trajectory is used as the
basis of error evaluation, (3) data modulation wipe-off for improved carrier tracking robust-
ness is applied not only on GPS L1 C/A signals, as previously, but now also on SBAS L1
signals, and (4) the performance benefit of vehicle GNSS antenna calibration is assessed.

[30] provides a demonstration of the performance that can be achieved with a low-cost
software-defined unaided RTK GNSS platform in a dense urban environment, and an
evaluation of the relative importance of various factors (e.g., data bit wipe-off, age of ref-
erence data, rover antenna calibration, reference network density) to the overall system
performance. To stimulate further innovation in urban precise positioning, all data from
[30]’s urban driving campaign has been posted at http://radionavlab.ae.utexas.edu
under “Public Datasets,” including wide-band (10 MHz) intermediate frequency samples
from both the reference and rover antennas, RINEX-formatted rover and reference ob-
servables, and the ground truth trajectory.

The rise of connected and automated vehicles has created a need for robust globally-
referenced positioning with lane-level (e.g., sub-30-cm) accuracy [52]. Much automated
ground vehicle (AGV) research focuses on the use of LIDAR and cameras for naviga-
tion, but these sensing modalities often perform poorly in low illumination conditions or
during adverse weather such as heavy fog or snowy white-out. By contrast, positioning
techniques based on radio waves, such as automotive radar or GNSS, are robust to poor
weather and lighting conditions [53]. Recent work has found that fusing measurements
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from low-cost automotive radars with inertial sensing can provide lane-level accuracy in
urban environments [53]. But radar-based positioning in a global coordinate frame re-
quires the production and maintenance of radar maps, which is a time-consuming and
costly endeavor.

GNSS signals provide a source of high-accuracy all-weather absolute positioning that
does not require expensive investment in systems for map production, storage, mainte-
nance, and dissemination. If the so-called integer ambiguities associated with the carrier
phase measurements can be correctly resolved, carrier-phase-based GNSS positioning
offers exquisite accuracy. However, GNSS signal blockage, diffraction, and multi-path ef-
fects make this family of techniques extremely challenging to use in urban areas. Carrier-
phase differential GNSS (CDGNSS), whose real-time variant for mobile platforms is com-
monly known as real-time kinematic (RTK) GNSS is a centimeter-accurate positioning
technique that differences a receiver’s GNSS observables with those from a nearby fixed
reference station to eliminate most sources of measurement error [54, Sec. 26.3]. Pre-
vious work by this paper’s authors probed the limits of unaided CDGNSS in the deep
urban environment, and found that the combination of a GNSS measurement engine op-
timized for urban positioning and robust estimation techniques for outlier exclusion make
CDGNSS feasible in the deep urban environment [30]. But the unaided CDGNSS system
described in [30] suffers from availability gaps of up to 90 seconds in duration, making it
insufficient to serve as the sole navigation sensor for an AGV.

A natural method to bridge such availability gaps is to incorporate measurements from an
inertial measurement unit (IMU). These measurements are uniquely valuable due to their
invulnerability to environmental effects such as radio interference and weather. Com-
bined GNSS and inertial navigation systems that incorporate only GNSS position solu-
tions as measurements for a downstream navigation filter are termed loosely coupled,
whereas tightly coupled systems directly incorporate raw GNSS observables (pseudo-
range, Doppler, or carrier phase) [54, Sec. 28.8]. While both loosely- and tightly-coupled
aiding can bridge availability gaps, tightly coupled aiding additionally reduces these gaps’
frequency and duration: the inertial sensor provides probabilistic constraints between
GNSS measurement epochs that increase the success rate of carrier phase integer am-
biguity resolution. These constraints additionally make the navigation solution observable
with fewer GNSS measurements.

AGV navigation filter performance can be further improved by tight coupling with so-called
vehicle dynamics constraints (VDCs). One such technique exploits the natural motion
constraints of four-wheeled ground vehicles, commonly referred to as non-holonomic con-
straints (NHCs). A second VDC technique infers a lack of vehicle motion by monitoring,
for example, wheel odometry ticks, or by detecting a lack of road vibration. This constraint
is then enforced as a strong zero-velocity pseudo-measurement, called a zero velocity
update (ZUPT) in the literature.

[3] extends the navigation filter component of the CDGNSS system described in [30] by
tightly coupling with an inertial sensor and with vehicle dynamics constraints, and by incor-
porating measurements from multiple vehicle-mounted GNSS antennas. It also develops
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a novel robust estimation technique to mitigate the effects of multi path and allow graceful
recovery from incorrect integer fixes.

The performance of CDGNSS unaided by inertial sensing in urban environments has his-
torically been poor. Experiments in [49] suffered from poor availability (<60%) and large
positioning errors (>9m RMS) in suburban and urban environments. A 2018 assessment
of commercial CDGNSS receivers found that no low-cost solution offered greater than
35% fixed-integer solution availability in urban environments [50]. [43] achieved a 76.7%
unaided correct integer fixing rate in urban Wuhan, China using dual-frequency CDGNSS
with a professional-grade receiver. In 2019, Humphreys et al. achieved an unaided cor-
rect integer fix rate of 84.8% in the urban core of Austin, Texas [30].

Tightly-coupled inertial aiding has long been employed as a method to increase CDGNSS
solution availability and robustness. Early systems built around highly-accurate but ex-
pensive tactical-grade IMUs were capable of providing robust positioning in dense urban
areas [39, 40, 41, 42]. The recent emergence of inexpensive consumer- and industrial-
grade Micro-Electro-Mechanical systems (MEMS) inertial sensors has led to a new chap-
ter of research in low-cost inertial aiding for urban CDGNSS.

[43] demonstrated that the tight coupling of single-antenna professional-grade GNSS mea-
surements with an industrial-grade MEMS IMU increased the integer fix availability of
single-frequency CDGNSS from 44.7% to 86.1% on a test route in urban Wuhan, China.
However, the authors did not provide the GNSS dataset, information on the incorrect in-
teger fix rate, or a full error distribution, making these results difficult to assess.

[3] is the first to demonstrate an increased CDGNSS integer fix rate in an urban environ-
ment via tight coupling with a consumer-grade inertial sensor. Furthermore, it incorporates
vehicle dynamics constraints and multiple vehicular GNSS baselines. The system’s per-
formance is evaluated on a publicly-available urban positioning data set, allowing for a
head-to-head comparison of techniques by the urban positioning research community.

One disadvantage of CDGNSS is that it requires observations from a nearby base sta-
tion to eliminate modeling errors (e.g., for atmospheric delays or satellite clocks and or-
bits) common to both the base station (the reference) and the vehicle (the rover). Short-
baseline CDGNSS, which offers the greatest robustness against urban multi path [55],
is limited to reference-rover baseline lengths below approximately 10 km [56]. To avoid
the requirement for a nearby base station, attention has recently focused on extending
precise point positioning (PPP), which is based on precise orbit, clock, and atmospheric
corrections, to urban areas by tight coupling with inertial sensors.

Rabbou et al. in 2015 explored the tight coupling of PPP with a tactical-grade inertial
sensor in mostly open-sky conditions with simulated GNSS outages, achieving centime-
ter accuracy [57]. [58] and [59] extended tightly-coupled PPP to industrial-grade MEMS
inertial sensors in highway and suburban environments. More recently, [60] demonstrated
tightly-coupled PPP using both a geodetic-grade and a low-cost GNSS receiver and an
industrial-grade MEMS sensor along an urban route in downtown Toronto, Canada, but
only achieved meter-level accuracy when using the low-cost GNSS receiver. A draw-
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back of PPP-based positioning is that the aforementioned results all required a roughly
10-minute convergence period before producing an accurate navigation solution. Short-
baseline CDGNSS positioning with a modern multi-frequency, multi-constellation receiver,
by contrast, typically yields instantaneous initialization.

Recent research has also explored the tight coupling of CDGNSS measurements with ve-
hicle dynamics constraints. [61] found in a simulation study using a realistic 3D map of
an urban environment that a tightly-coupled CDGNSS system using GPS only could fea-
sibly provide high-integrity decimeter-level positioning when aided with vehicle-dynamics
constraints, a tactical-grade IMU, and odometry based on wheel-speed sensors. [62]
tightly coupled single-antenna CDGNSS with non-holonomic constraints and a tactical-
grade fiber-optic IMU, but only evaluated their system under open-sky GNSS conditions
with simulated GNSS degradations.

The use of multiple GNSS antennas on the vehicle for CDGNSS offers four advantages.
First, the full six-degree-of-freedom vehicle pose (position and orientation) becomes in-
stantaneously observable when CDGNSS measurements are combined with the gravity
vector as measured by an inertial sensor. With a single GNSS antenna, the vehicle yaw is
observable only over multiple epochs, and only if the vehicle accelerates during the obser-
vations [63]. Second, the shared reference antenna creates redundancy in the measure-
ment model that allows better ambiguity resolution performance than any CDGNSS base-
line taken individually [64]. Third, the additional set of GNSS measurements at the second
antenna provides reduced position estimation error. Fourth, a highly effective method for
GNSS spoofing detection, the multi-antenna defense [65], can readily be implemented.

Multi-antenna GNSS has long been used for attitude-determination applications with snap-
shot estimation methods such as C-LAMBDA [66] and MC-LAMBDA [67], which provide
globally-optimal single-epoch maximum-likelihood solutions to the full nonlinear GNSS at-
titude determination problem, and have been successfully extended to the pose estimation
case [68]. Other work has incorporated special cases of a priori attitude information into
the nonlinear solution process [69]. These snapshot methods, however, are computation-
ally demanding, and their extension to recursive estimation for tight coupling with other
sensors is not straightforward and remains unexplored.

[70] found that a hard constraint using an a priori known vehicle attitude to combine
CDGNSS observations from multiple vehicle antennas can increase ambiguity resolution
and urban CDGNSS performance. However, this method requires a highly-accurate inde-
pendent source of attitude information, such as from an expensive gyrocompass-capable
tactical-grade IMU following an initial static alignment period.

[64] proposed pose estimation based on multiple vehicle antennas for inland waterway
navigation. This work sidestepped the complexity of C-LAMBDA or MC-LAMBDA by lin-
earizing the attitude model in an extended Kalman filter (EKF) update and propagating the
state with a simple motion model. This formulation was found to increase ambiguity res-
olution performance over either the positioning or attitude determination problems taken
independently. However, the authors made no attempt to incorporate an inertial sensor
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or additional motion constraints.

[71] developed a multi-antenna GNSS system for aircraft pose estimation that is tightly
coupled with a MEMS inertial sensor, but only used CDGNSS for attitude measurements,
relying on standard pseudo-range measurements for the estimator’s position component.

[72] tightly coupled triple-antenna CDGNSS with an industrial-grade inertial sensor for a
micro air vehicle navigation application, but only evaluated the system’s performance over
a single, short test flight in open-sky conditions, and did not compare against a “ground
truth” reference.

Previous work [73, 74] by this paper’s authors explored a sub-optimal “federated filtering”
approach to the tightly-coupled multi-antenna CDGNSS + inertial problem, additionally
incorporating monocular vision measurements in [73]. But the approach did not properly
model the multi-antenna CDGNSS measurement update, instead of resolving the position
and attitude baselines separately.

An estimation technique is presented in [3] that tightly couples multi-antenna CDGNSS
with vehicle dynamics constraints and inertial measurements. It is the first in the open
literature to explore the tightly-coupled combination of multi-antenna CDGNSS and inertial
sensing for navigation in urban environments. Furthermore, it is the first to explore the
use of consumer-grade inertial sensors for tightly-coupled deep urban CDGNSS. It also
applies a novel application of the unscented transform for the multi-baseline CDGNSS
integer ambiguity resolution and measurement update step, which widens the operating
regime of the filter to allow significantly greater attitude uncertainty without suffering from
the excessive integer least squares (ILS) failures seen by existing EKF approaches. A
novel false fix detection and recovery technique is developed that limits the degree to
which an incorrectly-resolved integer ambiguity can corrupt the tightly-coupled CDGNSS
estimator’s state.

It also provides a demonstration of state-of-the-art deep urban CDGNSS performance,
achieving, by tight coupling with consumer-grade and industrial-grade inertial sensors,
respectively, a 96.6% and 97.5% integer fix availability, and 12.0 cm and 10.1 cm overall
(fix and float) 95th percentile horizontal positioning error on the publicly-available TEX-
CUP urban positioning data set [31].

2.1.3 Jamming and Spoofing Defenses:

The combination of easily-accessible low-cost Global Navigation Satellite System (GNSS)
spoofers and the emergence of increasingly-automated GNSS-reliant ground vehicles
prompt a need for fast and reliable GNSS spoofing detection [75, 76]. To underscore this
point, Regulus Cyber recently spoofed a Telsa Model 3 on autopilot mode, causing the ve-
hicle to suddenly slow and unexpectedly veer off the main road [77]. Among GNSS signal
authentication techniques, signal-quality-monitoring (SQM) and multi-antenna could be
considered for implementation on ground vehicles [78]. However, SQM tends to perform

19



Literature Review of PNT and GNSS Threats and Vulnerabilities to HATS

poorly on dynamic platforms in urban areas where strong multipath and in-band noise are
common [79, 80, 78, 81], and multi-antenna spoofing detection techniques, while effective
[82, 65], are disfavored by automotive manufacturers seeking to reduce vehicle cost and
aerodynamic drag. Thus, there is a need for a single-antenna GNSS spoofing detection
technique that performs well on ground vehicles despite the adverse signal-propagation
conditions in an urban environment.

In a concurrent trend, increasingly-automated ground vehicles demand ever-stricter lateral
positioning to ensure the safety of operation. An influential recent study calls for lateral
positioning better than 20 cm on freeways and better than 10 cm on local streets (both
at 95%) [52]. Such stringent requirements can be met by referencing lidar and camera
measurements to a local high-definition map [83, 84], but poor weather (heavy rain, dense
fog, or snowy whiteout) can render this technique unavailable [53]. On the other hand,
recent progress in precise (dm-level) GNSS-based ground vehicle positioning, which is
impervious to poor weather, has demonstrated surprisingly high (above 97%) solution
availability in urban areas [3]. This technique is based on carrier-phase differential GNSS
(CDGNSS) positioning, which exploits GNSS carrier phase measurements having mm-
level precision but integer-wavelength ambiguities [85].

Key to the promising results in [3] is the tight coupling of CDGNSS and IMU measure-
ments, without which high-accuracy CDGNSS solution availability is significantly reduced
due to pervasive signal blockage and multipath in urban areas (compare the improved
performance of [3] relative to [30]). Tight coupling brings mm-precise GNSS carrier phase
measurements into correspondence with high-sensitivity and high-frequency inertial sens-
ing. The particular estimation architecture of [3] incorporates inertial sensing via model
replacement, in which the estimator’s propagation step relies on bias-compensated ac-
celeration and angular rate measurements from the IMU instead of a vehicle dynamics
model. As a consequence, at each measurement update, an a priori antenna position
is available whose delta from the previous measurement update accounts for all vehicle
motion sensed by the IMU, including small-amplitude high-frequency motion caused by
road irregularities. Remarkably, when tracking authentic GNSS signals in a clean (open
sky) environment, the GNSS carrier phase predicted by the a priori antenna position and
the actual measured carrier phase agree to within millimeters.

[4] pursues a novel GNSS spoofing detection technique based on a simple but a conse-
quential observation: it is practically impossible for a spoofer to create a false ensemble
of GNSS signals whose carrier phase variations, when received through the antenna of a
target ground vehicle, track the phase values predicted by inertial sensing. In other words,
antenna motion is caused by road irregularities, or rapid braking, steering, etc., is sensed
with high fidelity by an onboard IMU but is unpredictable at the sub-cm-level by a would-be
spoofer. Therefore, the differences between IMU-predicted and measured carrier phase
values offer the basis for an exquisitely sensitive GNSS spoofing detection statistic. What
is more, such carrier phase fixed-ambiguity residual cost is generated as a by-product of
tightly-coupled inertial-CDGNSS vehicle position estimation such as performed in [3].

Two difficulties complicate the use of fixed-ambiguity residual cost for spoofing detection.
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First is the integer-ambiguous nature of the carrier phase measurement [85], which causes
the post-integer-fix residual cost to equal not the difference between the measured and
predicted carrier phase, as would be the case for a typical residual, but rather this differ-
ence modulo an integer number of carrier wavelengths. Such integer folding complicates
the development of a the probability distribution for a detection test statistic based on car-
rier phase fixed-ambiguity residual cost.

The severe signal multipath conditions in urban areas create thick tails in any detection
statistic based on carrier phase measurements. Setting a detection threshold high enough
to avoid false spoofing alarms caused by mere multipath could render the detection test
insensitive to dangerous forms of spoofing. Reducing false alarms by accurately modeling
the effect of a particular urban multipath environment on the detection statistic would be
a Sisyphean undertaking, requiring exceptionally accurate up-to-date 3D models of the
urban landscape, including materials properties. [4] takes an empirical approach to these
difficulties. It does not attempt to develop a theoretical model to delineate the effects of
integer folding or multipath on its proposed carrier-phase fixed-ambiguity residual cost-
based detection statistic. Rather, it develops null-hypothesis empirical distributions for
the statistic in both shallow and deep urban areas and uses these distributions to demon-
strate that high-sensitivity spoofing detection is possible despite integer folding and urban
multipath.

2.2 Augmented PNT

The RNL has also explored several augmentations to GNSS for PNT. [6] aimed to augment
terrestrial radio navigation systems (TRNS) with autonomous signal-situational-awareness
capability, allowing TRNS operators to detect spoofing and meaconing attacks within their
systems. Such a capability is necessary to address a vulnerability to certain replay at-
tacks that remain even when TRNS signals are secured by navigation message encryption
and authentication. Two signal authentication techniques are developed to detect a weak
spoofing signal in the presence of static and dynamic multipath. Both are shown to be ef-
fective in simulations of the varied operating environments that TRNS will encounter. With
autonomous signal situational awareness, TRNS gain a defensive capability that GNSS
cannot easily match: a comprehensive defense against most man-in-the-middle attacks
on position, navigation, and timing services.

The security of terrestrial radio-navigation systems (TRNS) has not yet been addressed
in the literature. [7] builds on what is known about securing global navigation satellite sys-
tems (GNSS) to address this gap, re-evaluating proposals for GNSS security in light of the
distinctive properties of TRNS. TRNS of the type envisioned in this paper are currently in
their infancy, unburdened by considerations of backward compatibility: security for TRNS
is a clean slate. [7] argues that waveform- or signal-level security measures are irrele-
vant for TRNS, preventing neither spoofing nor unauthorized use of the service. Thus,
only security measures that modify navigation message bits merit consideration. This
paper proposes orthogonal mechanisms for navigation message encryption (NME) and
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authentication (NMA), constructed from standard cryptography primitives and specialized
to TRNS: message encryption allows providers to offer tiered access to navigation param-
eters on a bit-by-bit basis, and message authentication disperses the bits of a message
authentication code across all data packets, posing an additional challenge to spoofers.
The implementation of this proposal will render TRNS more secure and resilient than tra-
ditional civil GNSS.

[5] presents a method of tightly coupling carrier-phase-differential GNSS (CDGNSS) with
terrestrial radio navigation system (TRNS) signals and data to build a robust positioning,
velocity, and timing (PVT) solution for urban air mobility (UAM). UAM will require precise
and robust PVT solutions that are resilient to interference and jamming. CDGNSS offers
absolute positioning with high availability and sub-decimeter accuracy but cannot serve
as the sole source of PVT for UAM because of its vulnerability to interference: a single
potent GNSS jammer could deny UAM service across an entire city where GNSS the sole
means UAM navigation. TRNS signals are stronger than those of GNSS and offer addi-
tional frequency diversity. Their multipath errors, although larger than for GNSS at street
level due to the low elevation angles with which TRNS signals propagate from terrestrial
transmitters, are manageably small at altitudes where UAM vehicles will operate. Thus,
TRNS offers an attractive backup to GNSS for UAM. This paper explores two techniques
for the fusion of TRNS and CDGNSS: loosely- and tightly-coupled. The loosely-coupled
technique fuses information from the two sensing modalities at the level of full PVT solu-
tions. The tightly-coupled technique explored here fuses GNSS carrier phase and pseudo-
range measurements with TRNS pseudo-range, Doppler, and calibrated pressure sensor
measurements, together with inertial sensor measurements, to produce a unified PVT
solution. Innovations-based measurement exclusion is applied to reduce the impact of
GNSS and TRNS multipath errors and pressure anomalies due, e.g., to ground effect at
take-off and landing. Both loosely- and tightly-coupled techniques are tested on an aerial
vehicle platform in an environment where both GNSS and TRNS signals are available.
Error growth of the tightly-coupled technique during extended intervals of GNSS denial is
studied to determine whether UAM service could continue uninterrupted when only inertial
and TRNS measurements remain available. [8] analyzes the fundamental trade-offs that
occur in the co-design of orthogonal frequency-division multiplexing signals for both rang-
ing (via time-of-arrival estimation) and communications. These trade-offs are quantified
through the Shannon capacity bound, probability of outage, and the Ziv-Zakai bound on
range estimation variance. These bounds are derived for signals experiencing common
impairments, Rayleigh fading, and multipath channels. Using these bounds, analysis is
provided demonstrating how Pareto-optimal design choices can be made to optimize the
communication throughput, probability of outage, and ranging variance. Furthermore, dif-
ferent signal design strategies are analyzed, showing how certain designs achieve better
performance depending on the channel.

Traditional Global Navigation Satellite System (GNSS) immunity to interference may be
approaching a practical performance ceiling. Greater gains are possible outside traditional
GNSS orbits and spectrum. GNSS from low Earth orbit (LEO) has long been viewed as
promising but expensive, requiring large constellations for rapid navigation solutions. The
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recent emergence of commercial broadband LEO mega-constellations invites study on
dual-purposing these for both communications—their primary mission—and a secondary
PNT service [9]. Operating at shorter wavelengths than traditional GNSS, these constella-
tions would permit highly directive, relatively compact receiver antennas. PNT-specific on-
orbit resources would not be required: the transmitters, antennas, clocks, and spectrum
of the hosting broadband network would suffice for PNT. Non-cooperative use of LEO sig-
nals for PNT is an option, but cooperation with the constellation operator (“fusion” with its
communications mission) eases the burden of tracking a dense, low-altitude constellation
from the ground and enables a receiver to produce single-epoch stand-alone PNT solu-
tions. This paper proposes such a cooperative concept, termed fused LEO GNSS. Viability
hinges on opportunity cost, or the burden a secondary PNT mission imposes on the com-
munications constellation operator. This is assessed in terms of time-space-bandwidth
product and energy budget. It is shown that a near-instantaneous-fix PNT service over
±60◦ latitude (covering 99.8% of the world’s population) with positioning performance su-
perior to traditional GNSS pseudoranging would cost less than 1.6% of downlink capacity
for the largest of the new constellations, SpaceX’s Starlink. This allocation is comparable
to adding one user consuming 5.7 Msps of broadband service to each cell. Traditional
GNSS has been brilliantly successful, yet for some applications, they remain inadequate
with regard to the accuracy, constellation survivability, or robustness to interference—for
both civil and military users. To address these limitations, several alternative augmenta-
tion systems have been investigated. In this context, GNSS augmentations are defined
as sensors other than GNSS receivers or IMUs that can be used for PNT. Potential GNSS
augmentations are cameras, radars, lidars, terrestrial radio navigation systems (TRNS),
communication systems, LEO PNT, and other signals of opportunity. These alternate sen-
sors can operate as both supplements to GNSS, as well as stand-alone PNT solutions in
GNSS-denied environments. This section covers GNSS augmentations in the following
order: (1) Vision-based; (2) Radar-based; (3) TRNS; (4) Communication systems; (5) LEO
PNT; and (6) Signals of Opportunity.

2.2.1 Vision:

On vision systems, Petit et al. were the first to discover a camera blinding attack by laser
shooting, which was demonstrated on MobilEye [87]. Yan et al. further demonstrated such
attacks via both laser shooting and LED light shooting [88]. However, these works were
focused on sensing mechanism-specific attacks and did not take a close look at poten-
tial vulnerabilities on the downstream AI perception algorithm side. For the latter, various
works have studied physical-world attacks (e.g., using malicious stickers/patches/posters)
against camera-based perception and localization algorithms in HAV context, e.g., those
for traffic sign detection [89, 90, 91, 92, 93], object tracking [94], lane detection [95, 96, 97],
multi-sensor fusion [98], vehicle detection [92, 99], pedestrian detection [100, 101], etc.
Among them, several recent works were able to demonstrate the attack effectiveness
on commercial HAV systems, such as a commercial traffic sign recognition system [93]
and commercial lane keeping systems [95, 96]. Besides using stickers/patches/posters,
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several prior works also found that projectors can be used to attack camera-based HAV
perception algorithms as well, e.g., by projecting patterns to the ground [102] or to the traf-
fic sign surface [103]. Besides using physical-world attacks, several works also explored
using sensor attacks to attack the camera perception, e.g., using GPS spoofing [104] and
laser shooting [105] to attack traffic light detection, using invisible infrared lights (IR light)
to attack object detection and localization [106], and using projector light shooting to attack
traffic sign detection [107].

Micro aerial vehicles (MAVs) are increasingly being used for applications such as 3D map-
ping that requires both (1) precise pose (position and orientation) knowledge relative to a
global coordinate system fixed to the Earth’s surface, and (2) close-in maneuvers to en-
sure high resolution of the area being mapped. A global coordinate system is essential for
applications such as automated infrastructure inspection[108], 3D modeling of buildings
[109], disaster recovery or search and rescue[110], and open-world virtual reality [74], in
which mapping data from the MAV is consumed by other, possibly automated, agents,
potentially long after the initial mapping process.

Carrier-phase differential GNSS (CDGNSS) techniques such as real-time kinematic (RTK)
positioning can offer centimeter-accurate positioning accuracy, and so serve as an ex-
cellent anchor for globally-referenced pose estimation. However, such accuracy is only
achieved robustly and instantaneously when so-called carrier phase ambiguities are re-
solved to their integer values [111]. Confident ambiguity resolution depends on a large
number (e.g., 12+) of participating low-multipath GNSS signals[112], or on a tight prior
position estimate. But as a mapping MAV passes close to buildings, under overhanging
rooftops, or around foliage, GNSS signal blockage and multipath effects become severe,
limiting the availability of CDGNSS unaided by inertial sensing. Users of mapping MAVs
therefore currently tend to avoid altogether areas where GNSS signals might be obstructed
[113].

The MAV platform also places unique constraints on navigation systems: onboard com-
pute is restricted by size, weight, and power limitations; the lively system dynamics of
MAVs require low-latency measurement and estimation; and, in many cases, MAVs may
only feature low-cost consumer-grade cameras and inertial measurement units (IMUs).

[73] describes a method for improving CDGNSS performance via tight coupling with a
visual-inertial pose estimator. A CDGNSS system is defined herein as tightly coupled
with visual and inertial sensing if the latter aid in resolving CDGNSS integer ambiguities.
A loosely coupled CDGNSS system, in contrast, is based on a standalone CDGNSS esti-
mator that operates without aiding other sensors. Information in a loosely-coupled system
only flows one way, from the CDGNSS estimator to the downstream estimators.

Tight coupling with inertial sensors is a widely-studied and well-understood method of
increasing the robustness and availability of fixed-integer CDGNSS positioning [39, 40,
41, 42]. Early efforts used high-quality navigation- or tactical-grade inertial sensors to
provide positioning constraints over lengthy GNSS outages. More recently, researchers
have exploited lower-cost industrial-grade micro-electro-mechanical system (MEMS) in-
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ertial sensors to bridge short GNSS outages [114, 115, 43] or for attitude-only CDGNSS
[71]. These industrial-grade MEMS sensors are significantly larger, heavier, and more
expensive than the consumer-grade MEMS inertial sensors of the type commonly found
in low-cost MAVs.

In a companion paper[74], tight coupling with a consumer-grade MEMS sensor is shown
to improve CDGNSS performance in degraded GNSS conditions or over short complete
outages. The current paper explores the addition of visual measurements to the same
tightly-coupled inertial-CDGNSS system analyzed in [74].

There are reasons beyond integer ambiguity fixing for inertial sensing in precise MAV
positioning: First, CDGNSS combined with an inertial sensor can provide the full pose of
the vehicle. Second, inertial sensing allows the global the scale of visual features to be
observable when combined with visual positioning, which is important for visual-inertial
positioning during GNSS outages [116].

A popular method for MAV navigation is the fusion of visual and inertial measurements
[117, 118, 119, 120, 121]. These systems generally operate by tracking visual features
seen by one or more cameras, and taking the position of features in the camera field of
view as measurements for a pose estimator [117]. In some cases, the positions of the
visual features are jointly estimated along with the camera pose, in a technique known as
simultaneous localization and mapping (SLAM). Absent a prior globally-referenced map,
visual-inertial navigation systems are fundamentally relative positioning systems, and can-
not provide a globally-referenced pose estimate. They also suffer from odometric drift
except in certain cases where returning to a previously-visited location enables “loop clo-
sure.”

Tight coupling of visual-inertial sensing with CDGNSS has not been as widely studied
as inertial-only coupling. The VISRTK technique proposed in [47] directly incorporates
the double-difference carrier phase measurement model, including integer ambiguities,
into a bundle-adjustment based SLAM problem. This approach is near-optimal, but far
too computationally demanding for real-time implementation on an MAV, and does not
attempt to incorporate IMU measurements.

The authors of [122] proposed tight coupling of CDGNSS with visual positioning, an inertial
sensor of unstated quality, and barometric altitude measurements, but the visual position-
ing method used requires the collection and curation of precise aerial imagery. The use
of 2-dimensional aerial maps also precludes close-in maneuvering to buildings and other
obstacles.

Li et al. in [123] implemented tight coupling of single-antenna CDGNSS with monocular
visual-inertial odometry via a multi-state constraint Kalman filter (MSCKF) [119]. How-
ever, the system as reported depended on an industrial-grade IMU. Moreover, SLAM-type
visual-inertial techniques can be advantageous over MSCKF estimation due to their ability
to map visual features while an RTK fix is available, then exploit the previously-mapped
features during an outage. In contrast, the MSCKF technique is fundamentally odometric:
visual feature tracks are immediately marginalized when ingested into the filter.
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The work perhaps most comparable to this paper is [124], which describes the tight cou-
pling of CDGNSS, a smartphone-grade IMU, SLAM-based visual feature measurements,
and a beacon-based local positioning system for a robotic lawn mower application. While
[124] showed that visual measurements reduce the overall position drift during an RTK fix
outage, it did not offer a convincing demonstration of an improved integer fix rate.

The primary contribution of [73] is the incorporation of visual measurements into a tightly-
coupled multi-antenna CDGNSS-inertial pose estimator using a smartphone-grade IMU
and camera. It provides the first demonstration of an increased RTK integer fix rate using
visual-inertial aiding with smartphone-grade sensors.

2.2.2 Radar

Due to the fundamental role of RADAR, LiDAR, and vision systems in HAV systems, vari-
ous prior works have studied their security issues in HAV contexts, especially those under
the more realistic external physical-layer attack models (e.g., sensor/analog attacks). On
RADAR, Yan et al. are the first to show jamming and spoofing attacks on the millimeter-
wave RADAR on Tesla Model S, with the former able to make detected objects disappear
from the Autopilot system, and the latter able to alter the object distance [88]. Sun et al.
performed a more comprehensive follow-up analysis, which was able to show more reli-
able spoofing effects and the ability to cause meaningful system-level effects (e.g., vehicle
crashes) to the victim HAV [125].

The development of automated ground vehicles (AGVs) has spurred research in lane-
keeping assist systems, automated intersection management [37], tight-formation pla-
tooning, and cooperative sensing [126, 127], all of which demand accurate (e.g., 50-cm at
95%) ground vehicle positioning in an urban environment. But the majority of positioning
techniques developed thus far depend on lidar or cameras, which perform poorly in low-
visibility conditions such as snowy whiteouts, dense fog, or heavy rain. Adoption of AGVs
in many parts of the world will require all-weather localization techniques.

Radio-wave-based sensing techniques such as radar and GNSS (global navigation satel-
lite system) remain operable even in extreme weather conditions because their longer-
wavelength electromagnetic radiation penetrates snow, fog, and rain. Carrier-phase-
differential GNSS (CDGNSS) has been successfully applied for the past two decades
as an all-weather decimeter-accurate localization technique in open-sky conditions. Pro-
prioceptive sensors such as inertial measurement units (IMUs) also continue to operate
regardless of external conditions. Coupling a CDGNSS receiver with a tactical-grade in-
ertial sensor, as in [39, 40, 41, 42] delivers robust high-accuracy positioning even during
the extended signal outages common in the urban environment, but such systems are
far too expensive for widespread deployment on AGVs. Recent work has shown that
20-cm-accurate (95%) CDGNSS positioning is possible at a low cost even in dense ur-
ban areas, but solution availability remains below 90%, with occasional long gaps between
high-accuracy solutions [30]. Moreover, the global trend of increasing radio interference in
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the GNSS bands, whether accidental or deliberate [81], underscores the need for GNSS-
independent localization: GNSS jamming cannot be allowed to paralyze an area’s auto-
mated vehicle networks.

Clearly, there is a need for AGV localization that is low cost, accurate at the sub-50-cm
level, robust to low-visibility conditions, and continuously available. [53] is the first to estab-
lish that low-cost inertial- and automotive-radar-based localization can meet these criteria.

Mass-market commercialization has brought the cost of automotive radar down enough
that virtually all current production vehicles are equipped with at least one radar unit, which
serves as the primary sensor for adaptive cruise control and automatic emergency brak-
ing. But the use of automotive radar for localization faces the significant challenges of
data sparsity and noise: an automotive radar scan has a vastly lower resolution than a
camera image or a dense lidar scan, and is subject to high rates of false detection (clutter)
and missed detection. As such, it is nearly impossible to deduce semantic information or
extract distinctive environmental features from an individual radar scan. The key to lo-
calization is to aggregate sequential scans into a batch, where environmental structure is
clearly evident. Even still, the data remain so sparse that localization based on traditional
machine vision feature extraction and matching is not promising. Additionally, stable short-
term odometry is a pre-requisite for aggregating radar scans, which in itself is a challenge
when dealing with low-cost inertial sensing.

[53] proposes a two-step process for radar-based localization. The first is the mapping
step: the creation of a geo-referenced two-dimensional aggregated map of all radar targets
across an area of interest. The full radar map used throughout [53], was constructed
with the benefit of a highly stable inertial platform so that a trustworthy ground truth map
would be available against which maps generated by other techniques could be compared.
But an expensive inertial system or dedicated mobile mapping vehicle is not required to
create a radar map. Instead, it can be crowd-sourced from the very user vehicles that will
ultimately exploit the map for localization. During periods of favorable lighting conditions
and good visibility, user vehicles can exploit a combination of low-cost CDGNSS, as in [30],
and GNSS-aided visual simultaneous localization and mapping, as in [38], to achieve the
continuous decimeter-and-sub-degree-accurate geo-referenced position and orientation
(pose) required to lay down an accurate radar map. In other words, the radar map can be
created when visibility is good and then exploited at any later time, such as during times
of poor visibility.

Despite aggregation over multiple vehicle passes, the sparse and cluttered nature of au-
tomotive radar data is evident from the radar map: the generated point cloud is much less
dense and has a substantially higher fraction of spurious returns than a typical lidar-derived
point cloud, making automotive-radar-based localization a significantly more challenging
problem.

The second step of [53]’s technique is the localization step. Using a combination of all-
weather odometric techniques such as inertial sensing, radar odometry, and ground ve-
hicle dynamics constraints, a sensor fusion filter continually tracks the changes in vehicle
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pose over time. Over the latest short interval (e.g., 5 s), pose estimates from the filter are
used to spatially organize the multiple radar scans taken over the interval and generate
what is hereafter referred to as a batch of scans, or batch for short. In contrast to the indi-
vidual scan, some environmental structure emerges in the batch of scans, making robust
registration to the map feasible. Even so, the localization problem remains challenging
due to the dynamic radar environment: note the absence of parked cars on the left side
of the street during localization. The batch of scans is matched against the prior map of
the surroundings to estimate the pose offset of the batch from the truth. This pose offset
is then applied as a measurement to the sensor fusion filter to correct odometric drift.

[53] contributes a robust pipeline for all-weather sub-50-cm urban ground vehicle position-
ing. This pipeline incorporates a computationally-efficient correlation-maximization-based
globally-optimal radar scan registration algorithm that estimates a two-dimensional trans-
lational and a one-dimensional rotational offset between a prior radar map and a batch of
current scans. Significantly, the registration algorithm can be applied to the highly sparse
and cluttered data produced by commercially-available low-cost automotive radars. The
maximization of correlation is shown to be equivalent to the minimization of the L2 dis-
tance between the prior map and the batch probability hypothesis densities. The pipeline
supports the construction of the radar registration estimate and optimally fuses it with iner-
tial measurements, radar range rate measurements, ground vehicle dynamics constraints,
and cm-accurate GNSS measurements, when available. A novel technique for online es-
timation of the vehicle center of rotation is introduced, and calibration of various other
extrinsic parameters necessary for optimal sensor fusion is described.

A thorough evaluation of the positioning pipeline on the large-scale dataset described
in [31] is presented. Data from automotive sensors are collected over two 1.5 h driving
sessions through the urban center of Austin, TX on two separate days specifically chosen
to provide variety in traffic and parking patterns. The dataset is collected in clear weather
conditions, but only includes data from sensors that are expected to remain unaffected in
adverse weather. Comparison with a post-processed ground truth trajectory shows that
proposed pipeline maintains 95th-percentile errors below 35 cm in horizontal position and
0.5◦ in heading during 60min of GNSS-denied driving.

2.2.3 Lidar

On LiDAR, Petit et al. is the first to show that laser shooting can be used to inject spoofed
points into a commercial LiDAR [87]. Shin et al. improved the attack mechanism to achieve
spoofed point injection at a closer distance than the LiDAR device, and also designed the
first jamming attack against LiDAR [128]. Building upon it, Cao et al. are the first to
achieve successful near-front vehicle spoofing at LiDAR object detection model level and
also end-to-end system-level attack effect (e.g., emergency brake) in an industry-grade
HAV system [129]. They achieved it by systematically combining LiDAR spoofing and ad-
versarial machine learning attack, dubbed “adversarial sensor attack”, which is the first
sensor-AI co-designed attack in the CPS context. Sun et al. further designed a black-box
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version of such an adversarial sensor attack to improve the attack practicality and gener-
ality [130]. They further designed the first principled defense method against such attacks
by using physical invariants from LiDAR sensing mechanism, which was able to both de-
tect attacks without modifying models and harden models, both without hurting accuracy
since such invariants should also hold in benign cases [130]. After that, Hallyburton et
al. found that camera-LiDAR fusion algorithms can by nature have defense capabilities
against LiDAR spoofing, and were able to further design a new attack to systematically
bypass such fusion-based defense [131]. Most recently, Cao et al. discovered that spoof-
ing attacks can also be used to remove points by moving the points in a range all to the
LiDAR Minimum Operational Threshold (MOT), which were able to show the removal of
∼4,000 point [132].

Besides sensor attacks against LiDAR, there also exist several physical-world attacks dis-
covered against LiDAR, mainly using adversarial 3D objects. Specifically, Cao et al. were
the first to discover that maliciously-shaped 3D objects can be used to attack both cam-
era and LiDAR object detection in HAV context while maintaining high stealthiness (e.g.,
by mimicking normal road objects such as traffic cones and rocks) [98]. They were also
able to concretely demonstrate their attack effect in the physical world using a real HAV
vehicle. Using the same attack vector, Yang et al. were able to design a new attack that
use a small roadside object to spoof a vehicle [133]. Besides carefully-crafted adversarial
3D objects, simple objects (e.g., cardboard and road signs) are also found to be effective
in attacking LiDAR perception [134, 135].

2.2.4 Terrestrial Navigation Systems

GNSS have provided excellent positioning solutions in open, outdoor environments, en-
abling a wide range of navigation and timing applications. However, the indoor environ-
ment remains largely out of reach to these weak signals. The requirement for accurate
and assured indoor positioning limits the effectiveness of GNSS in high-stakes, safety-
of-life applications like enhanced E911, as well as in a new generation of commercial
applications like warehouse automation and asset tracking.

Terrestrial radionavigation systems (TRNS), such as the commercial systems Locata [136]
and NextNav [137], are emerging to address these needs. These systems are marketed
to provide position, navigation, and timing (PNT) solutions in environments where GNSS
signals are degraded or denied. TRNS consist of networks of synchronized terrestrial
transmitters, or pseudolites, which operate analogously to GNSS satellites. These pseu-
dolites broadcast signals powerful enough to reach the interiors of typical buildings, per-
mitting the acquisition of terrestrial PNT service by urban or indoor users. A TRNS may
serve to augment GNSS signals, improving solution geometry and availability in dense
urban areas [138, 139], or it may serve as a primary navigation aid in the indoor environ-
ment [140].

The TRNS architecture [136, 137] and its sensitivity to wide-band radio-frequency interfer-
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ence (RFI) [141, 142] have been investigated in the literature. There have not, however,
been any public proposals for how to secure TRNS–or even any substantive discussion
of security considerations.

Broadly, the security of TRNS parallels that of other historical radio-navigation systems,
and thus security considerations for TRNS can draw from lessons learned in the vibrant
body of research on GNSS signal security. The important distinctions are threefold: first,
the vastly different dynamic range of terrestrial versus space-based transmissions; sec-
ond, the largely indistinguishable angular distribution of spoofed and authentic signals;
and third, the possibility of multi-lateral (i.e. network) sensing of transmissions within the
space bounded by the pseudolites. Of particular note is the way in which the adversary’s
receive power advantage renders exotic signal-level security techniques like spreading
code authentication [143, 144] or deterministic code-phase dithering irrelevant: the ad-
versary can always produce a pristine signal replica.

[7] analyzes the security considerations of TRNS with these three differences in mind. It
offers a concrete proposal for how to secure TRNS, with a focus on data-level security in
recognition of the futility of waveform- or signal-level security. This concrete proposal has
two non-obvious aspects: MAC leavening, whereby a modest number of message authen-
tication bits spread throughout the transmitted packets provide a significant improvement
in security, and multi-level encryption, which has not been used before in PNT security
and makes the adoption of this proposal more enticing for commercial service providers.

From the perspective of a radio-navigation system, there are essentially two types of ad-
versaries: parties wishing to obtain service without authorization (stow-aways), and par-
ties wishing to deny, degrade, or deceive authorized users of the service (jammers or
spoofers). This divides radio-navigation security into two domains, termed Encryption
(denying stow-aways) and Authentication (detecting spoofing). (N.B. that cryptographic
encryption techniques are a useful tool in both domains). The focus of this work on ter-
restrial commercial systems prompts the adoption of the term “subscriber” to refer to an
authorized user.

The greater dynamic range of terrestrial signals is a fundamental difference in the following
sense: with GNSS, a spoofer cannot easily gain an advantage in received signal strength
by moving closer to the transmitter, because this would require climbing thousands of kilo-
meters above the ground. Instead, the adversary who wishes to obtain a pristine signal
must build a large antenna. In TRNS, however, the adversary can “walk right up to” the
pseudolite, obtaining a signal as clear as they could wish. Furthermore, because a sub-
scriber cannot anticipate how much path loss may be present, it cannot anticipate how
strong a signal ought to be after de-spreading. These asymmetries enable an adversary
to obtain pristine signal replicas at low cost and high reliability, by locating a receive an-
tenna close to the pseudo-lite. This renders spreading code encryption (SCE) (after the
fashion of the GPS P(Y) code) largely irrelevant for TRNS: an adversary can always build
a network of receivers to obtain both the pseudolites’ spreading codes and position.

The threat from GNSS spoofing has been a concern within the GNSS community, ever
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since a portable spoofer was developed and successfully tested against a COTS re-
ceiver [145]. A number of live-signal spoofing tests in a controlled environment which
followed thereafter also affirmed the effect [146, 147, 148]. This threat continues to be
relevant today, with recent rumors of spoofing “in the wild” seen in specific spots such as
Black Sea [149], Syria [150] and China [151], or affecting multiple victim receivers which
coincidentally move along the same track [152]. With recent advancements in RF micro-
electronics, together with open-source GNSS signal generation software, building a func-
tional GNSS spoofer will become more accessible to the masses in the near future [153].
The spoofing threat is also relevant to TRNS because a functional TRNS spoofer can be
modified from a GNSS spoofer, given sufficient resources and knowledge of the TRNS
signal architecture.

TRNS has differentiated itself by having a high SNR and a limited-access standard, which
is perceived to be able to counter against conventional spoofers that rely on high signal
power and accurate prediction of spreading code and/or navigation data bit to mount a
successful attack. However, these characteristics do not make TRNS foolproof against
all spoofing threats. In fact, TRNS system has to tackle additional challenges due to high
signal strength, wider signal dynamic range, proximity of threats to transmitters, as well as
a potential reliance on GNSS for network synchronization. TRNS therefore faces a longer
list of vulnerabilities from its signal and physical characteristics than GNSS.

Unlike GNSS signals that have signal strength below noise floor, the spreading code se-
quence of TRNS can be exposed without the use of high-gain antenna due to its high
SNR. Reference [154] shows that the time slot usage, transmitters’ PRN and navigation
data bit of the Metropolitan Beacon System (MBS) from NextNav can be derived by an-
alyzing the power spectrum of the MBS signal. This makes the cost of SCER attack on
TRNS lower than that on GNSS, since the embedded security codes of TRNS can be more
easily observed and hence estimated. In addition, even if TRNS adopts a restricted ac-
cess standard and requires the use of secure tamper-resistant receiver to store the secret
key like military GNSS signals, it is still susceptible to record-and-replay attacks.

TRNS provides a wide-area positioning service using a network of synchronized terrestrial
transmitters. To ensure high accuracy in the PNT solution, stringent synchronization and
frequency stability requirements are placed on all pseudolites, which may be satisfied
either by: (1) the use of dedicated low-latency fiber-optic connection across the entire
network, which will incur significant setup cost and will limit the deployment sites, or (2)
the use of GNSS-disciplined atomic clocks, which reduces infrastructure cost and offers
greater flexibility in the placement of the pseudolites. While option 2 may be preferable
to providers, it exposes TRNS to an additional attack surface through its reliance upon
GNSS. In addition, the relative accessibility of the pseudolites compared to the Earth-
orbiting GNSS satellites indicates that TRNS is more susceptible to direct attacks, either
by physical or cyber tampering, or by co-locating a high-power interference transmitter to
overwhelm its signal.

TRNS inherits from traditional radio-navigation a bevy of well-known attacks. For the same
reason, TRNS can benefit from the products of a vibrant research effort over the past 20
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years to secure GNSS. Not all the techniques that have been proposed for securing GNSS
are applicable to TRNS— but it is equally true that the obligation of GNSS operators to
backwards compatibility has prevented them from fully exploiting these developments.
The time is right to incorporate what has been learned about GNSS security into TRNS.
The purpose of this section is to review some of the most powerful security techniques
that have been proposed for GNSS and to identify those ideas that are compatible with
TRNS.

GNSS spoofing defenses proposed in recent literature can be broadly classified into two
categories: (1) cryptographic techniques that utilize unpredictable but verifiable signal
modulation in the GNSS spreading code or navigation data, and (2) non-cryptographic
techniques such as signal processing techniques, geometric techniques, or drift monitor-
ing techniques. A comprehensive review of GNSS spoofing defenses is presented in [78].
While these techniques have been proven to be effective for GNSS, there are challenges
to their implementation for TRNS. The preliminary ideas of GNSS spoofing defenses fall
within the realm of non-cryptographic defenses, as they do not require any changes to
GNSS signal-in-space (SIS). These techniques are categorized based on their method of
differentiating spoofing signals from authentic signals, by looking for consistency in the
signal characteristics, signal geometry, or PNT solution.

Geometric techniques exploit the RF signals’ geometric diversity to verify the authenticity
of the signal source. This includes angle-of-arrival (AOA) discrimination techniques [82,
65, 155, 156] or Doppler frequency difference of arrival (FDOA) [157] discrimination using
multiple antennas. Other geometric techniques advocate the use of single antenna, and
discriminate spoofed and authentic signals either with a known perturbation profile [158]
or random motion profile [159], or using multiple feeds from a single antenna [160]. The
assumptions made by these techniques are: (1) the spoofing signals generally arrive from
below or near the horizon [160], (2) the observations from spoofing signals is not aligned
with the actual geometry between the satellites and the victim receiver [82, 155], and (3)
there are strong correlation of signal characteristics of different satellites from the spoofing
signals [158, 65, 159, 156]. However, it is not costly for a sophisticated spoofer to co-locate
dedicated spoofing sources at each of the TRNS pseudolites, thereby defeating all the
assumptions made by these techniques. In addition, the need for hardware modification
or additional hardware might not be suitable for applications that either use an existing
hardware for mass-market adoption, or have SWaP-C constraints.

Drift monitoring techniques, on the other hand, look for unusual changes in the output of
the receiver, such as position or clock fix, by coupling with external sensors. These include
the use of an oscillator to check for inconsistency in the clock bias or clock drift [161], or the
use of visual/inertial/radar odometry to place constraints on the reasonable error growth
of a position fix [162, 163]. The applicability of these techniques is limited by the SWaP-
C constraints of the applications, and the authentication performance is limited by the
accuracy of these sensors.

Signal processing techniques look for sudden deviations in the received signal charac-
teristics to indicate an onset of a spoofing attack. These techniques detect changes in
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the received carrier amplitude or the RF front-end’s AGC set-point, or a distortion in the
complex correlation function [164]. Signal processing techniques can be implemented in
software, unlike the previous categories of techniques discussed which require additional
hardware. These techniques are effective for GNSS which has signal strength below the
noise floor and narrow signal dynamic range. However, this is not applicable to TRNS,
which generally has high SNR and a wide signal dynamic range for quick acquisition in
both dense-urban and indoor environments. A potential spoofer will have a wide margin to
change the total received power and create a distortion-free correlation function using the
spoofing signal, and these indicators will not be picked up by the PD detector proposed
by [164].

The main objective of cryptographic spoofing defenses is to ensure information security.
Cryptographic techniques include encryption, which enforces the secrecy of data from
unauthorized access, and authentication which verifies the origin of the data. They provide
three features: (1) authentication, by verifying the origin of information, (2) confidentiality,
by protecting the information from disclosure to non-authorized parties, and (3) integrity,
by detecting any unauthorized information modification. These features increase the re-
silience of the signal against spoofing.

Several GNSS cryptographic spoofing defenses have been proposed and/or implemented
in both civil and limited-access GNSS signals. These spoofing defenses add cryptographic
features in small segments or in entire portion to either the fast-rate spreading code or
the low-rate navigation data. These cryptographic techniques can be classified into the
following groups: (1) navigation message encryption (NME), which encrypts the whole
navigation data message before being modulated onto the spreading code, (2) spreading
code encryption (SCE), which encrypts the whole spreading code sequence, (3) navigation
message authentication (NMA), which adds unpredictable digital signature into the navi-
gation data using asymmetric cryptography, and (4) spreading code authentication (SCA),
which inserts unpredictable watermark sequences within the open spreading code.

The straightforward, blanket encryption of a navigation signal may be attractive as a means
both to deny service to stow-aways and to authenticate the signal to subscribers. However,
there are sigificant caveats in both applications. The first regards the use of symmetric
cryptography.

One may apply symmetric encryption to the entire navigation message (NME) and/or the
spreading code (SCE, a la the GPS P(Y) code). The premise is that a spoofer who does
not know the symmetric key cannot produce a valid spoofing signal, or equivalently that a
receiver can be confident in a signal that appears in the output of a correlator tuned to the
secret spreading sequence (with similar reasoning for NME). However, a symmetric ap-
proach to authentication is extremely fragile, because a leaked symmetric key can be used
for spoofing. For this reason, military deployment of SCE involves tamper-resistant hard-
ware and costly, elaborate procedures for secure distribution and management of the se-
cret symmetric keys. This approach is untenable for civil or commercial radio-navigation.

NMA and SCA, in contrast, avoid the fragility of symmetric key management by adopt-
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ing asymmetric cryptography, using either delayed release approach or public-private key
pair. In SCA, short segments of unpredictable spreading code sequences (termed as “wa-
termarks”) are interleaved with long segments of predictable spreading codes in fixed or
random positions [143]. The receiver uses the predictable sequences to track the broad-
cast signal, and stores the unpredictable segments in the buffer while waiting for the infor-
mation about the watermarks. Once this information arrives, the receiver can synthesize
the unknown spreading sequence with the correct watermarks embedded in the right posi-
tion, and correlates this code segment with the relevant segment from its recorded signal
to verify signal authenticity. This technique requires modifications to the GNSS signal
generation. Hence, it will be difficult or impossible to be implemented on existing GNSS
which requires backward compatibility. However, TRNS, which comes with a green-field
waveform, can consider the implementation of SCA into its waveform design.

A growing literature advocates the use of NMA for civil GNSS signal authentication, with
proposed implementations for GPS [143, 165, 166], Galileo [167, 168], QZSS [169] and
SBAS [170, 171, 172]. NMA is already implemented in the Galileo Open Service, which
will start its Open Service Navigation Message Authentication (OSNMA) signal-in-space
transmission in the first quarter of 2020 and have full service available in 2021 [173]. This
technique uses either an asymmetric private-key/public-key approach such as the elliptic
curve digital signature algorithm (ECDSA) [166], or a delayed symmetric key release ap-
proach such as timed efficient stream loss-tolerant authentication (TESLA) [165]. Unlike
SCA, this technique can be implemented into existing GNSS signal, provided that there are
available unused bits in the navigation message to store the digital signature. However,
the leftover bits in the navigation message are usually limited. A trade-off has to be made
between the cryptographic strength of the NMA scheme, which is determined by the size
of the key and the digital signature, and the authentication latency, which is determined
by the frequency of digital signature validation. TRNS has more flexibility in incorporating
NMA into their waveform design, and can offer low time-to-first-authenticated-fix (TTFAF)
while maintaining strong cryptographic security.

In contrast to GNSS, TRNS comes with a clean-slate waveform design, and is not con-
strained by the need of backward compatibility. This offers TRNS providers flexibility in
their application of the latest cryptographic defense techniques—many of which were orig-
inally proposed for GNSS. The next section proposes one implementation of NME and
NMA for a TRNS.

As recently outlined in [7], however, TRNS have unique security challenges: (1) the dy-
namic range of TRNS signal power is vastly wider than that of GNSS, allowing would-be
spoofers access to high signal-to-noise ratio (SNR) signals and complicating spoofing mit-
igation based on simultaneous demodulation of spoofed and authentic waveforms [174];
(2) the angular distributions of spoofed, authentic, and multipath signals significantly over-
lap, rendering angle-of-arrival techniques based on multi-element antennas [65, 175] less
effective; and (3) TRNS transmitters are physically accessible.

Nevertheless, TRNS also have inherent security advantages. Chief among these is that
TRNS transmitters also function as receivers and can thus (1) accurately characterize the
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surrounding signal landscape’s nominal statistics and thereafter (2) search for anoma-
lies that reveal the presence of interfering signals. Current development of commercial
TRNS clean-slate designs offers an opportunity to exploit this advantage of TRNS for
enhanced security. The present work complements the cryptographic security proposal
presented in [7]. Briefly, [7] proposes a multi-tiered navigation message encryption (NME)
+ message authentication code (MAC)-based navigation message authentication (NMA)
scheme. One can think of [7] as offering a basic level of navigation security via crypto-
graphic methods. No TRNS should be fielded without such basic measures.

However, the techniques proposed in [7] are not sufficient to secure TRNS because the
exposed spreading codes of a high-SNR TRNS signals makes them vulnerable to repli-
cation in a security code estimation and replay (SCER) [176] or meaconing attack. More
generally, NME+NMA cannot fully protect TRNS against low-latency replay attacks. Even
exotic signal-level security techniques like spreading code authentication (SCA) [144] or
deterministic code-phase dithering [177] can be rendered ineffective by a spoofer’s ability
to access high-power authentic signals in a TRNS network. To address the gap in TRNS
defenses against low-latency signal replay attacks, [6] proposes an autonomous signal-
situational-awareness (SSA) overlay capability within a TRNS network. SSA is intended
to augment basic TRNS cryptographic security. While some spoofers will remain unde-
tectable, SSA gives TRNS operators a significantly improved chance of catching threats
and alerting users without resorting to costly full-duplex techniques (those requiring bi-
directional communication with users). Note that SSA is not possible for current GNSS
space vehicles in medium Earth orbit, which can neither receive each other’s signals nor
detect low-power ground-based spoofers. [6] seeks to place TRNS SSA on a solid theo-
retical and practical footing. First, signal authentication techniques for SSA are developed
based on the prior work in [79] and [80]. Second, simulations with a theoretical model of
multipath and spoofing signals are used to quantify the effectiveness of autonomous SSA
under some of the myriad operating conditions encountered by generic TRNS.

Central to the transportation revolution that will be driven by urban air mobility (UAM)
is the problem of robust and secure navigation. Urban environments offer more chal-
lenges, such as interference and multipath, when compared to open-sky conditions. As
the only positioning system that offers absolutely-referenced meter-level accuracy with
global coverage, GNSS will no doubt play a significant role in this revolution. If strength-
ened against jamming and spoofing, carrier-phase-differential GNSS (CDGNSS), coupled
with low-cost inertial sensing, will be nearly sufficient for position, velocity, and timing
(PVT) needs. But nearly sufficient is insufficient: it is not enough for a UAM PVT solution
to offer decimeter-accurate positioning with 99% availability, or even 99.9% availability.
UAM will demand that its navigation systems offer dm-accurate positioning with integrity
risk on the order of 10−7 for a meter-level alert limit and availability with several more 9s
than 99.9% [178, 179, 52, 180].

[5] technique is best viewed as one part of a comprehensive navigation solution concept
called deep-layered navigation (DLN) in which synergistic but independent navigation sys-
tems are layered to increase accuracy and robustness. DLN is the navigation analog of
the “defense in depth” concept in information security, where multiple layers of security
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controls and checkpoints are emplaced throughout a system such that even when some
layers are breached, security is maintained. Likewise, in the safety-of-life UAM navigation
context, multiple layers of navigation systems, all interoperable and mutually-reinforcing
but substantially independent, are an essential defense against the whims of Mother Na-
ture and the foibles of human nature.

At DLN’s core sits redundant inertial navigation, which is virtually impervious to radio fre-
quency (RF) interference, poor weather, signal blockage, and data ambiguity. The out-
ermost layer—the default navigation system and first line of defense—is a specialized
variant of inertially-aided CDGNSS, recently developed in [3, 4], that has been substan-
tially secured against spoofing and substantially hardened against the multipath and signal
blockage conditions of the urban ground vehicle environment, which can be considered a
worst-case realization of the urban air vehicle environment. But despite its coupling with
inertial sensing, the technique developed in [3] cannot tolerate extended GNSS outages.
A secondary source of absolute PVT is required to bound the growth of position errors.

TRNS beacons provide much stronger signals compared to GNSS, operate at a different
frequency, and offer a full absolutely-referenced backup PVT solution to GNSS. In partic-
ular, [5] explores tight coupling with NextNav’s Metropolitan Beacon System (MBS). MBS
is particularly attractive for UAM because its signals carry not only wideband (multipath-
resistant) synchronization sequences for ranging but also corrections data for barometric
altitude determination and, for CDGNSS. [5] presents the development of a tightly-coupled
GNSS-TRNS-inertial PNT system is a prelude to upcoming work on comprehensive deep-
layered navigation for UAM, including additional layers based on radar localization, visual
odometry, and LEO-satellite-provided GNSS.

Augmentation of GNSS with terrestrial signals has been explored and shown to provide
an added benefit over exclusive use of GNSS [181, 182]. But these techniques were
demonstrated only on ground vehicles, and the sensor integration with CDGNSS was not
tightly-coupled: the terrestrial signals were not incorporated in a way that permitted aiding
of the ambiguity resolution process critical to CDGNSS. Loose coupling between GNSS
and TRNS has been used to augment GNSS and provide an increase in both accuracy and
availability on aerial vehicles [183, 184, 185]. But these methods fuse standard GNSS, not
CDGNSS, with TRNS, and thus lack the decimeter accuracy that will be desirable, if not
required, for UAM. Relative ranging measurements from ultra wide band (UWB) systems
have been used to constrain integer ambiguities in CDGNSS and improve accuracy even
with degraded GNSS reception [186]. Although UWB systems provide adequate perfor-
mance, the limited range of the UWB signal makes it an unfavorable choice for UAM.
Fusion of GNSS and signals of opportunity has been explored for aerial vehicles with
promising results [187, 188]. But for a safety-of-life application like UAM, it is likely that
signals of opportunity will be viewed less favorably than a dedicated TRNS as a secondary
means of navigation.

[5] makes four primary contributions. First, it presents and demonstrates the first use
of tightly-coupled CDGNSS, TRNS, and inertial sensing to provide a secure and robust
PVT solution. Second, it develops a novel innovations-based measurement exclusion
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technique which mitigates the impact of GNSS and TRNS multipath errors and pressure
anomalies. Third, it offers a comparative analysis of loose and tight coupling on an aerial
vehicle in an environment where only TRNS signals are available. Fourth, it preforms a
study of error growths during periods of GNSS denial to determine whether PVT require-
ments for UAM could be met despite extended intervals of GNSS denial.

2.2.5 Communication Systems

Today’s wireless communication networks are experiencing an ever growing demand for
not only traditional communications but accurate user positioning as well. As user-equipment
(UE) continues to be deployed in increasingly mobile applications, ranging from automo-
tive vehicles to aerospace markets, the next generation of wireless networks will need to
keep up with high demands for precise positioning. Orthogonal frequency-division mul-
tiplexing (OFDM), which is the most commonly used modulation in today’s cellular net-
works, has been adopted in the 802.11, long term evolution (LTE), and 5G new radio (NR)
standards. While these OFDM-based standards currently include positioning protocols
[189, 190], the standards designed these positioning protocols as a secondary priority to
traditional communications, which prioritizes data rates, latency, and network reliability.
Furthermore, non-cooperative users may attempt to extract ranging estimates without es-
tablishing a communication link within the network at all, instead using the communications
as a signal of opportunity. In both cases, the existing OFDM signals are not designed to
provide the most precise ranging estimates possible and may soon become insufficient to
meet the markets precise positioning demands. To keep up with the importance of posi-
tioning, OFDM communication waveforms should be purposefully co-designed to prioritize
both ranging and communications.

Envision a scheme where a UE attemps to determine its position without network coop-
eration. The most simple approach the UE can take is to correlate its received samples
against the known portion of the signal: the training sequences and pilots. Through this
correlation, the UE can extract a time-of-arrival (TOA) estimate and therefore a pseudo-
range measurement. Much like traditional GNSS processing, the UE can determine its
location using pseudoranges from multiple base stations. However, this requirement to
collect pseudoranges from multiple base stations runs almost contrary to the typical layout
of wireless network cells: where regions are typically served by single base stations. As
a result, the SNRs of signals collected from more distant base stations may be poor and
possibly low enough that meaningful data cannot be transmitted over the link. At such low
SNRs, TOA estimates experience a thresholding effect where the variance of TOA esti-
mates rises dramatically. This phenomenon occurs when sidelobes in the autocorrelation
function become the dominant source of estimation error, which will be referred to as the
“sidelobe-dominated regime”. As the SNR drops significantly low, the threshold plateaus
in an “ambiguous regime”, where meaningful estimates cannot be obtained from the sig-
nal and the best estimator is that which maximizes the prior belief about the TOA. As SNR
increases, the thresholding effect in the sidelobe-dominated regime becomes less impact-
ful and ultimately negligible, where the estimator enters a “mainlobe-dominated regime”.
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In this regime, the dominant source of error is from estimates that occur near the peak of
the mainlobe in the signal’s autocorrelation function. This mainlobe-domainated regime is
precisely what the Cramer-Rao Lower Bound (CRLB) analyzes.

An additional regime may occur if the UE uses a more advanced approach than simply
correlating against known pilots, especially when the SNR is high enough that data can
be decoded. Some of these tecniques are included in 5G NR such as round-trip time and
uplink-based TDOA but require cooperation with the network and the base stations. A
new non-cooperative TOA estimation method, which prior work has not yet studied, is a
decision-directed estimator. In this decision-directed approach, the UE would first decode
the data bits carried in the data subcarriers, reconstruct the OFDM signal using these esti-
mates, and correlate against the reconstructed signal rather than simply the known portion
of the signal. Since data symbols make up a significant portion of the energy in OFDM
transmissions, such a decision-directed estimator could experience noticeable gains in
post-correlation SNR and a decrease in TOA estimation errors. A potential downside to
this method is that incorrectly decoded bits could hinder the estimator and result in poorer
performance. Therefore, the bit error rate would need to be low enough that the gains from
correctly decoded bits outweigh degradation from incorrectly decoded bits. Above some
SNR, this required error rate will become achievable, allowing the estimator to operate
in a new decision-directed regime with enhanced positioning accuracy. Decision-directed
approaches have seen success in channel and doppler estimation [191, 192], but so far
have not been extended to range estimation for positioning. [8] focuses on the scheme
where range is estimated through correlating only the known portions of an OFDM signal.
The decision-directed scheme will be reserved for future work.

[8] explores how the design of OFDM signals impacts both range estimate precision and
communication capacity in different propagation environments. To quantify ranging preci-
sion in these regimes, [8] makes use of the Ziv-Zakai bound [193]. The use of this bound
as opposed to the CRLB is especially important as it captures the thresholding effects
that occur in the sidelobe-dominated regime, which are entirely missed by the CRLB. To
quantify capacity, Shannon capacity is computed, factoring in impairments due to mul-
tipath, block fading, carrier-frequency offset estimation error, and common phase errors.
The design of these OFDM signals is dictated by several parameters, most importantly the
placement and power allocation of pilots and training symbols throughout a single OFDM
block. Furthermore, system requirements may be imposed on other parameters such as
the subcarrier spacing, bandwidth, and cyclic prefix length. The selection of these param-
eters results in intricate tradeoffs between ranging precision and communication capacity,
especially when channel impairments are considered. [8] quantifies these tradeoffs and
proposes OFDM design solutions that balance performance in both ranging and capacity.

[8] derives the Shannon capacity bound and probability of outage for generic OFDM sig-
nals, accounting for channel estimation error, intercarrier interference, and common phase
errors. Furthermore, [8] derives the Ziv-Zakai bound on range estimation variance for the
same signals. These bounds also account for Rayleigh fading and multipath channels. [8]
also proposes a method of co-designing OFDM signals to achieve both ranging and com-
munication performance requirements through the use of Pareto curves plotting either the
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Shannon capacity or probability of outage against the Ziv-Zakai bound on ranging error
variance. These curves allow optimal system configurations to be selected. [8] analyzes
how different channel impairments, fading models, and multipath impact both communi-
cations and ranging performance, demonstrating how certain signal designs are better
suited for certain propagation environments than others.

Prior work has studied how OFDM signals can be used for positioning, but the major-
ity of this work operates only within existing protocols rather than proposing new signal
designs. This is a broad field of work, covering several protocols of interest. Time-of-
arrival and ranging estimators for LTE signals have been analyzed in [194, 195, 196]. The
Cramer-Rao Bound for TOA/range estimation is derived in both [195, 196] to evaluate the
performance of their estimators. This bound has limited applicability in low SNR regimes.
A comparison between OFDM and pseudonoise-based signals in [197] demonstrated that
OFDM signals may provide improved time-based range estimation performance. A large
number of publications have also focused on the field of opportunistic positioning and nav-
igation, utilizing signals from LTE [198], FM OFDM [199], and mobile TV [200, 201]. While
these studies provide valuable insights into the performance capabilities of such estima-
tion and positioning algorithms, they do not necessarily address the design of the signals
themselves, instead working within existing protocols.

Some work has specifically addressed the design of OFDM signals for ranging. Driusso et
al. partially addressed signal design and studied how the placement of positioning pilots
within the LTE framework affected ranging performance by computing the Ziv-Zakai bound
[202]. But, while insights regarding subcarrier placement are valuable for the design of
OFDM waveforms for ranging, the restriction to only signals achievable within LTE limits
that study’s applicability. Furthermore, the bounds discovered in [202] do not account for
fading effects, which are common and known to degrade ranging performance. Wang
et al. provided ranging accuracy bounds for a generic OFDM signal model that included
multipath fading but only computed the CRLB, failing to address the SNR threshold effect,
which will not be uncommon in OFDM-based ranging [203]. The study in [204] proposed
a unique OFDM design strategy for selecting a sparse subset of bands to use in the signal
such that time-delay estimation can meet set requirements under multipath propagation
environments. The multipath signal modeling is rigorous and the estimation computa-
tionally complexity is significantly reduced using the proposed sparse design. However,
the criterion used for optimization is the CRLB which ignores sidelobes and thresholding
effects at low SNR. Furthermore, the study does not directly address how such a rang-
ing signal would coexist within an OFDM system being used for communications as well.
Another optimization technique is proposed in [205], in which pilots are allocated to opti-
mize for both time-delay and channel estimation. Much like the previous paper, the CRLB
is used in the optimization criterion limiting this techniques applicability in low SNR, and
communication capacity is not factored in. Karisan et al. also took a similar approach
[206] where an the power allocation across pilots was designed to minimizes the range
estimation CRLB in the presence of interference. Similarly, [8] does not address low SNR
thresholding effects or the tradeoffs that such a design would have with a joint communi-
cation system. While not specifically addressing OFDM design for ranging, the impact of
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OFDM design parameters on sidelobe energy in the signal’s autocorrelation function was
analyzed in [207].

The communication capacity of OFDM systems has also been extensively studied in prior
work. Goldsmith’s textbook on wireless communications thoroughly covers the computa-
tion of channel capacity and outage in the presence of fading [208]. Yoo and Goldsmith
extended this analysis to MIMO channels that have channel estimation error [209]. Tang
et al. analyzed the effect of channel estimation error in the presence of Rayleigh fading
[210]. Ohno provided analysis on the MMSE channel estimation error in OFDM systems
and its impact on channel capacity in block Rayleigh fading [211]. Ohno used this work to
propose optimal pilots to maximize capacity. While the capacity of these systems alone
has been thoroughly analyzed, such analysis has not been combined with a ranging vari-
ance analysis to illuminate the trade-offs between capacity and ranging accuracy.

2.2.6 LEO PNT

Use of low-Earth orbit (LEO) constellations for positioning, navigation, and timing (PNT)
dates back to the earliest operational satellite navigation constellation, TRANSIT [212].
Based on Doppler measurements extracted from narrowband UHF signals received from
a single satellite at a time, TRANSIT required several minutes for convergence to a sub-
100-meter solution.

The trade studies from which the Global Positioning System (GPS) was later conceived
revealed that a medium Earth orbit (MEO) system with wideband signals would be more
resistant to jamming than TRANSIT and would be capable of satellite-redundant instanta-
neous positioning with only a few dozen space vehicles (SVs) [212, Ch. 1]. L band was
chosen because its wavelengths are short enough for ionospheric transparency, yet long
enough to avoid significant attenuation due to rainfall and water vapor [213, 214, 54]. By
now all traditional global navigation satellite systems (GNSS) have settled into a system
architecture similar to that of GPS, to great success: billions of users across the globe
benefit from low-cost, high-accuracy, near-instantaneous positioning and timing.

Nevertheless, the traditional GNSS architecture suffers from some deficiencies. Non-
GNSS uses of the congested space-to-Earth spectrum in L band have prevented allocation
of much greater bandwidth for GNSS in that band. Constellation survivability is limited by
the small number of SVs, which make attractive targets for anti-satellite warfare [215, 216].
Jamming immunity is limited by the weakness of the signals, which, being diffused over an
entire hemisphere, are easily overwhelmed [81, 76]. And positioning precision is limited
by both signal weakness and bandwidth, which place information-theoretic lower bounds
on ranging uncertainties [213].

In response to a pressing need for greater robustness and accuracy, GNSS has evolved
over the past two decades. Several new constellations have been launched, and new sig-
nals have been introduced at separate frequencies—most with binary offset carrier wave-
forms that more efficiently allocate signal power [54, 212]. Nonetheless, GNSS remains
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principally MEO, L-band, and confined to a bandwidth occupying less than 125MHz. Given
tight budgets and enormous design inertia owing to the need for backward compatibility,
radical changes in traditional GNSS over the next 30 years are unlikely. Spot beams, a
promising feature of the GPS III program for improved jamming immunity [217], have been
abandoned. Calls to introduce new GNSS signals in C band (e.g., [218]) have not gained
traction. Upgraded SVs and more sophisticated receiver antennas will continue to extract
gains in interference immunity, but likely not tens of decibels.

In short, traditional GNSS have been brilliantly successful, yet for some applications they
remain inadequate with regard to accuracy, constellation survivability, or robustness to
interference—for both civil and military users. To address these limitations, [9] intro-
duces a concept for LEO PNT that exploits current and upcoming broadband LEO mega-
constellations via a novel “fused” communications-and-PNT service. The practical costs
and challenges facing past LEO GNSS proposals, including hosted-payload LEO GNSS
and signal-of-opportunity (SoP) LEO GNSS, motivate the paper’s proposed architecture.

[9] makes three primary contributions. First, it summarizes the features of modern broad-
band LEO system design and operation relevant to dual-purposing such systems for PNT.
Second, it presents a detailed concept of operations for fused LEO GNSS, to be defined
in the next section. Third, it provides an analysis of the opportunity cost to constellation
providers for re-allocating resources to provide a fused PNT service.

The earlier paper published in [219] is complementary to the present paper, which provides
a complete description of the fused LEO GNSS concept and a detailed opportunity cost
analysis. The reader is referred to [219] for analyses of achievable fused LEO GNSS
positioning precision and anti-jam advantage compared to traditional GNSS. Summary
values from these analyses are provided in Table tab:hostedvsfused for reference.

Expansion of GNSS back to the LEO ambit of TRANSIT beckons as a promising way to
address the limitations of traditional GNSS. Mega-constellations of commercial satellites
in LEO are being launched (SpaceX’s Starlink and OneWeb’s constellations) or planned
(Amazon’s Kuiper constellation) to provide broadband connectivity across the globe. Such
services’ global reach, low latency, and wide bandwidth situate them to revolutionize
broadband communications.

[9] seeks to establish a less-obvious assertion: These constellations could also revolu-
tionize satellite-based PNT. Their SVs are far nearer and more numerous than those of
traditional GNSS in MEO or geostationary orbit, and their communications transponders
have both exceedingly high gain and access to a vast allocation of spectrum. Potential
commercial LEO PNT signals are thus more precise, powerful, and jam-resistant than
those of traditional GNSS.

Dual-purposing LEO communications constellations for PNT is not a new concept. The
emergence of the Globalstar and Iridium constellations in the late 1990s offered the prospect
of LEO-provided navigation based on both Doppler and ranging. These constellations
employ communications waveforms whose frequency and group delay can be measured
opportunistically (i.e., without special cooperation by the constellation operator) and con-
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verted to typical GNSS observables: Doppler, phase, and pseudorange measurements
[220, 221, 222, 223, 224, 225, 226] (see [212, Ch. 2] for definitions of these observables).
But as with TRANSIT, only one or two Globalstar or Iridium SVs are simultaneously vis-
ible to a typical terrestrial user, preventing accurate instantaneous positioning. Instead,
both theoretical [227] and experimental [222, 228, 229, 226] research has shown that sev-
eral minutes of single-satellite passage across the sky are necessary for positioning to an
accuracy below 100 meters. This remains true for IridiumNEXT, whose constellation is
patterned after the original Iridium constellation [230].

The emergence of mega-constellations of LEO satellites whose signals can be exploited
for many-in-view navigation, whether opportunistically or with the cooperation of the con-
stellation operator, is an entirely new phenomenon. The literature exploring use of such
constellations for PNT begins with [231, 232]. The current paper belongs in this category.

Although not originally intended for PNT, broadband mega-constellations are designed for
rapid technological refresh via software or hardware, and so may be adaptable for PNT.
But unlike traditional GNSS, in which costs are borne by nation-states and service is free-
of-charge, commercial GNSS providers will seek to recoup costs from users. For such a
scheme to be viable, it must be economical: that is, it must offer fundamental advantages
over traditional (free) GNSS commensurate with the price tag, otherwise there will be no
demand; and must be sufficiently inexpensive to provide, otherwise there will be no supply.
[9] explores both facets of this problem.

In their groundbreaking work, Reid et al.[231, 232, 233, 234] analyzed the performance
of potential LEO GNSS implemented using hosted payloads: dedicated PNT hardware
onboard each satellite. There are good reasons to explore a hosted payload solution:
Such payloads are modular, independent of the satellite’s primary communications mis-
sion, and may be iterated and upgraded for future launches. As laid out by Reid et al.,
hosted PNT signals provide continuous global coverage and may be incorporated into
user pseudorange navigation equipment nearly as readily as traditional GNSS signals.
Reid et al. estimate that the system would enjoy a 30 dB improvement in signal-to-noise
ratio, and thus resistance to jamming, over traditional GNSS.

A hosted payload approach along those lines is not radically dissimilar to traditional GNSS.
No theoretical obstacle bars the way. However, space hardware development is costly and
challenging as a practical matter. And a hosted payload would be costly: besides the cost
of each payload, there are costs associated with renting space and hookups on the host
satellite, costs for running necessary radiofrequency interference and compatibility testing,
and both costs and risks of delay in securing the necessary frequency allocations.

A growing area of PNT practice draws measurements from so-called signals of opportu-
nity (SoPs), typically wireless communications signals[235, 236, 225]. SoP techniques
seek to eliminate the need for cooperation with the wireless system operator. Satellite
downlink signals from the new LEO mega-constellations could be processed as SoPs,
as has been done previously with the smaller Iridium and Globalstar constellations [222,
223, 224, 228, 229, 230, 226]. Such SoP-based LEO GNSS has several benefits. First,
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there is no need for cooperation with the constellation owner, which eliminates a poten-
tial coordination barrier to offering a PNT service. Second, users may exploit LEO SoPs
without compensating the constellation owner, as has been the case with terrestrial cel-
lular SoPs[225]. Third, since SoP-based PNT is necessarily passive, it preserves users’
anonymity. Taken together, these three advantages are unique to SoP-based PNT and
cannot be directly matched by non-opportunistic techniques.

Despite these advantages, SoP-based LEO GNSS suffers a key limitation, which might be
termed the “few-in-view” problem. With fewer than four (or, in the case of Doppler-based
PNT, eight) satellites in view, near-instantaneous cold-start PNT with inexpensive clocks
is not possible: the time to achieve a PNT fix stretches from seconds, as with traditional
GNSS, to several minutes, as with TRANSIT, Iridium, and Globalstar [237, 228, 238, 239].

One might expect LEO mega-constellations to provide greater SV coverage for SoP-based
PNT than do the relatively small Iridium and Globalstar constellations. However, a large
fraction of mega-constellation SVs will orbit at altitudes lower than Iridium and far lower
than Globalstar, offering smaller terrestrial service areas per vehicle[240, 241]. Moreover,
not all overhead satellites may direct energy to a given user’s location. Although early
SpaceX regulatory filings indicated its Starlink mega-constellation SVs would broadcast a
quasi-omni-directional beacon signal to aid network entry, it is not clear whether such a
beacon will always be present in the system as launched. Recent work by Neinavaie et
al. detected Doppler-trackable beacons [242], but in a contemporaneous Starlink signal
analysis the present paper’s authors found that such narrow-band emissions appeared to
be absent when the downlink was busy. Thus, beacon signals may only be sent when the
downlink is idle, rendering them intermittent or totally unavailable once the system is more
fully burdened.

Consequently, the only SoPs available from Starlink may be the broadband signals carried
in narrow spot beams from each SV toward a small number of assigned compact service
regions [243]. Significantly, the present authors’ Starlink signal analysis has revealed that
each service region is illuminated by broadband signals from at most two SVs. Thus, areas
with no active subscribers may receive no broadband signals at all. Other broadband
mega-constellation operators will likely adopt designs similar to Starlink’s. The net effect,
at any given instant, will be a reduction in the number of satellites actively illuminating the
SoP user’s location. [9] analyzes a scenario in which the global average number of SoPs
from a LEO mega-constellation is less than that of Iridium by a factor of 6.3×. This takes
single-mega-constellation-based SoP LEO GNSS from one-in-view to less-than-one-in-
view, with a time to fix that will be unacceptably long for many applications.

Cooperation with mega-constellation operators could solve the few-in-view problem, en-
abling nearly-instantaneous-time-to-fix global PNT via traditional-GNSS-like multi-lateration.
In this paradigm, PNT becomes a secondary service that augments the LEO mega-constellations’
primary communications mission. Befitting its ancillary status, the PNT service ought not
require significant changes to the SVs or to the constellation’s allocation of on-orbit re-
sources. [9] therefore focuses on solutions which “fuse” the requirements of PNT into the
existing capabilities of the mega-constellation. In fused LEO GNSS, the hardware already
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designed and the spectrum already allocated for the satellites’ primary broadband mission
is dual-purposed for PNT. While this is also true of SoP LEO GNSS, fused LEO GNSS
goes further to fully exploit the broadband signal’s capabilities.

To support a fused LEO GNSS service, the constellation operator arranges for intermit-
tent spot-beam coverage of areas where PNT users are present, providing signals from
enough satellites for receivers to produce single-epoch stand-alone PNT solutions. Such
cooperation also has the benefit of eliminating the duplication of effort associated with
third-party tracking of orbits and clocks for a dense constellation.

Compared to hosted-payload LEO GNSS, fused LEO GNSS sacrifices nothing in perfor-
mance while eliminating the costs of special-purpose on-orbit hardware. In fact, where
previous proposals targeted positioning precision on par with traditional GNSS pseudo-
ranging (on the order of 3m), fused LEO GNSS can improve on this by more than an
order of magnitude [219]. Moreover, it offers a significant anti-jam advantage over L-band
hosted-payload solutions in terms of tolerable signal-to-interference ratio, thus making it
attractive as a means for delivering assured PNT (A-PNT). This advantage comes at the
cost of larger and potentially more expensive user equipment as compared to a hosted
payload solution: for maximal anti-jam performance, a fused LEO receiver will require
a phased array antenna. But for many applications, the user equipment, like the satel-
lite hardware, will be dual-purposed for both communications and PNT: the same mass-
market antenna and radio connecting a vehicle to a LEO communications network will be
used for positioning at little additional cost.

These strengths emerge from two features of fused LEO GNSS. First, the plentiful data
bandwidth present in each broadband satellite transmission burst permits supplying users
with up-to-the-instant (and therefore highly accurate) orbit and clock products. Such orbit
and clock products need not depend on atomic clocks onboard the SVs nor an extensive
SV-observing network on the ground. Instead, the PNT service can employ a multi-tier
GNSS architecture in which each SV’s orbit and clock models are obtained via on-orbit
precision orbit determination (POD) based on an onboard traditional GNSS receiver driven
by a modest-quality clock [231]. Second, unlike traditional L-band services, commercial
broadband signals in K-band and V-band have both high signal-to-noise-ratio (SNR) and
large bandwidth. This greatly reduces receiver noise and multipath as a source of user
ranging error, even when the ranging signal used over the communications link adopts the
same structure and spectral profile as the usual communications signals. Furthermore,
because these signals have a much shorter wavelength than traditional GNSS, it is pos-
sible to build a highly-directional receiver phased array for an additional 30 dB of anti-jam
performance that is compact relative to its L-band equivalent.

PNT precision, anti-jam performance, and other constellation characteristics are com-
pared in Table 3 for traditional GNSS, hosted-payload LEO GNSS, and fused LEO GNSS.
SoP LEO GNSS is not included due to its few-in-view problem.

For use cases in which a hemispherical antenna is preferred, such as handheld devices,
the fused SNR is not high enough to permit ephemeris and clock model updates via the
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Characteristic Traditional
GNSS Hosted[232] Fused

(hemi RX)
Fused

(array RX)

Single-epoch PNT
Unlimited users
Low Earth Orbit
Mega-constellation
On-orbit POD
Non-atomic clocks
Time multiplexed
Excess bandwidth
Zero age-of-ephemeris †
Highly directional

Localized power boost $$$ $ $ $

Precision vert.
horz. 3.0m

4.8m
3.0m
4.4m

37 cm
48 cm

19 cm
25 cm

Anti-jam advantage — +30 dB +25.3 dB +56 dB

Maturity Mature Unproven
Funding Public Private
Cost to user Gratis Commercial

Table 3: Contrasting traditional GNSS, previous hosted-payload proposals, and fused LEO GNSS. Precise
orbit determination (POD) here assumes onboard GNSS receivers in LEO (multi-tier GNSS). Positioning
precision is 95th percentile in the horizontal and vertical directions. Anti-jam advantage is compared to an
L-band choke-ring antenna [219]. Because K-band downlink power is tailored to meet power flux regulations
at ground level[244], variable atmospheric absorption due to e.g. weather is assumed to be compensated
by increased transmit power at the SV.
† If user downloads ephemeris via some other channel.

standard broadband data link. Thus, a back-up communications link such as cellular data
service would be required. Note that certain design elements that give fused LEO GNSS
its performance advantage could be incorporated into future hosted payload proposals.
However, [9] only makes comparisons against published proposals.

To be viable, a fused LEO GNSS service must be cost-effective for providers. As one of
its key contributions, [9] shows that providing PNT service to every user in one service
cell (e.g., for the Starlink constellation, a hexagon of up to 1090 km2 [245]) is roughly
as costly, in terms of constellation resources spent providing PNT signals, as a single
5.7 Msps downlink stream. Also, whereas broadband service expends constellation re-
sources in proportion to the number and activity level of subscribers, GNSS service con-
sumes resources in proportion to coverage area. For this reason, in dense urban centers
where only a small fraction of potential broadband subscribers can be accommodated and
alternatives for broadband connectivity abound, a fused LEO GNSS service could be a
profitable complement to a mega-constellation’s primary broadband mission.
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Indeed, it has been observed [246] that effective subscriber density constraints in first-
generation Ku broadband LEO systems could be severe. For this reason, population dis-
tribution statistics are invoked only indirectly in what follows, insofar as they are needed
to predict the global distribution of downlink power expenditure onboard the SVs.

2.3 Spectrum Situational Awareness

Spectrum situational awareness (SSA) goes hand-in-hand with resilient PNT. Interference
can present itself anywhere across the RF spectrum as attackers can target any subsys-
tem of sensors on the HAV (e.g. GNSS receiver and FMCW radar). Identifying when and
where a receiver is affected by interference is an important first step towards locating and
mitigating the interference itself. Detecting and geolocating RF signals is a coveted capa-
bility as it facilitates search-and-rescue, tracking, and spectrum monitoring. LEO-based
receivers are a proven asset for detecting, classifying, and geolocating terrestrial GNSS
interference. Emitter geolocation from Low Earth Orbit (LEO) offers worldwide coverage
with a frequent refresh rate, making it possible to maintain a common operating picture of
terrestrial emitters, e.g. GNSS jammers and spoofers. Moreover, LEO satellites’ stand-
off distance from terrestrial interference sources permits tracking authentic GNSS signals,
enabling precise time-tagged data captures from time-synchronized LEO-based receivers
and precise orbit determination.

LEO provides a unique vantage point for observing GNSS interference: it is close enough
to the source of the interference for a single sensor to characterize the strength, power
spectra, and signal content of terrestrial jamming and spoofing sources, but far enough
that authentic GNSS signals may still be tracked and navigation solutions computed.
These observations permit geo-referenced characterization of terrestrial GNSS interfer-
ence, which is an important step on the way to understanding the extent of the phe-
nomenon and developing mitigation strategies. By working directly on 100 Hz data-wiped
complex IQ correlation products instead of lower-frequency receiver products, it is pos-
sible to identify interference with greater sensitivity, permitting detection not long after it
is first received [10]. Successive ground passes of the Fast, Orbital, TEC, Observables,
and Navigation (FOTON) receiver aboard the International Space Station (ISS) form an
impressively complete GNSS interference survey of the globe at latitudes below the ISS
inclination of 51.6 degrees.

[11] explores single-satellite single-pass geolocation of terrestrial GNSS spoofing signals
from Low Earth Orbit. GNSS spoofers transmit an ensemble of false GNSS signals intend-
ing that the victim(s) receiver will accept them as authentic signals and infer a false position
fix and/or a clock offset. Receivers in LEO provide a unique opportunity to detect, classify,
and geolocate terrestrial GNSS interference. Single-satellite-based transmitter geoloca-
tion is possible from Doppler measurements alone, assuming a carrier can be extracted
from an interference signal. There are proven single-satellite Doppler-based geolocation
algorithms, but they only apply to emitters transmitting at a constant frequency. By con-
trast, GNSS spoofers transmit signals whose carrier frequency contains an unknown time-
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varying frequency component that imitates the Doppler corresponding to each individual
spoofed navigation satellite. This paper develops a single-pass single-satellite technique
that removes the unknown time-varying frequency component added by GNSS spoofers
so that a Doppler (range-rate) time history can be extracted for geolocation. It is shown
that the true range rate between the terrestrial spoofer and LEO-based receiver manifests
in the spoofed receiver clock offset rate estimate. Monte Carlo simulations are developed
that investigate how transmitter motion, transmitter clock offset rate, and spoofed clock
offset rate affect geolocation accuracy. The proposed method is validated by simulating
the reception of terrestrial GNSS spoofing signals on a LEO-based receiver and achieving
under 10 km accuracy. Additionally, recent real-world GPS spoofing signals captured by
a LEO-based receiver are analyzed. This section will present advances in interference
localization from LEO as well as FMCW radar interference.

2.3.1 Interference Monitoring from LEO

GNSS signals are relied upon for a number of safety critical applications where there is
a need for precise localization or clock synchronization. Due to the low strength of the
signals at point-of-use, they are easily overwhelmed by RF interference — malicious or
unintentional. This interference may simply deny a navigation and timing solution; it may
also induce inauthentic solutions unbeknownst to the victim. Identifying when and where
a GNSS receiver is affected by interference is an important first step towards locating
and mitigating the interference itself. The work presented in [10] takes advantage of the
receiver’s rather unique platform — the International Space Station (ISS) — to detect
GNSS interference as it is occurring. This task is aided by the fact that the ISS is one
of the most-observed spacecraft presently in orbit; even if the navigation solution were
severely degraded, a position estimate can be obtained from regularly updated public
ephemerides.

The strength of a signal interfering with GNSS is also its Achilles’ heel: it is easily heard,
provided one is listening. A number of recent efforts have exploited this fact to monitor
GNSS interference across the globe. One such approach takes advantage of the public
Automatic Dependent Surveillance-Broadcast (ADS-B) used for air traffic control [247].
Interference was recognized as irregularities in ADS-B reports, which are collected by the
community receiver network OpenSky. In fact, the authors of [247] were able to provide
an estimate of the interference source’s location by noting the effects on multiple flight
paths and convex optimization techniques. This approach has its limits: the OpenSky
Network’s receivers are primarily (although not totally) located in populated areas with
reliable internet access, with little coverage over oceans. Furthermore, the use of ADS-B
means that it has limited coverage over conflict areas where overflights are rare but GNSS
interference is likely to be present [248]. On the other hand, this approach is vindicated
by the observation that GNSS interference tends to be inordinately powerful, affecting
aviation up to 300 km from its estimated origin [249].

Commercial efforts have also entered the business of interference monitoring: hosted pay-
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loads managed by Aireon aboard Iridium NEXT satellites monitor ADS-B transmissions
from orbit, enabling Aireon to observe areas not covered by OpenSky [250]. Yet another
project takes advantage of data from over 500 reference receivers collected by organi-
zations under the aegis of the International GNSS Service (IGS) [251]. It is desirable to
search for GNSS interference in a way that is restricted to neither commercial flight paths
nor the vicinity of reference stations. HawkEye360 is attempting to do exactly that: as a
demonstration mission, three Pathfinder spacecraft launched in late 2018 were used to
geolocate land-based reference signals [252, 253]. The Pathfinder spacecraft were placed
in a Sun-synchronous orbit (SSO) at an altitude of 575 km, spaced apart by 100 to 200 km.
Onboard software-defined receivers are capable of 144 MHz to 15 GHz; GNSS signals
are well within this range in the L band (1 to 2 GHz). At the time of writing, HawkEye 360
has yet to publish its attempts to geolocate GNSS interference sources.

The signals are broadcast by high-power spoofing and jamming equipment that has the
potential to disrupt GNSS-derived positioning, navigation, and timing (PNT) over a large
geographic area. The strategies most effective at detecting and mitigating this interfer-
ence depend on the (generally unknown) strategy used by the spoofer [78]. A simple,
widely-implemented strategy requires the GNSS receiver to report when interference is
present, prompting the user to discard the navigation solutions as invalid. This approach
generally does not permit the user to entirely ignore the interference, as it can easily be
strong enough to overwhelm the relatively weak GPS signal (at the Earth’s surface). Being
an eavesdropper in LEO, the FOTON receiver isn’t itself led astray by spoofing attacks, al-
though careful processing of raw captures can elicit the structure of the interference signal
[254, §3].

There is also the possibility, not yet publicly demonstrated, that clever terrestrial interfer-
ence could target an unsuspecting satellite in LEO. Such an attack could be particularly
damaging to a satellite that relies on precise localization or timing for its mission, and
not require a transmitter significantly stronger than those presently used to interfere with
terrestrial receivers. Spacecraft-targeting interference would present an insurmountable
challenge for the work presented here; one could then no longer make the assertion that
the receiver is tracking authentic signals. However, spaceborne GNSS receivers in LEO
are aided by the fact that any interference source on the Earth’s surface will quickly fall
out of sight as the spacecraft continues in its orbit.

Previous work in this area identified and located persistent sources of GNSS interference
that were present over many ground passes [254, §4]. However, much GNSS interference
is transient with a duration of only hours or days. Despite its shorter duration, transient
interference can compromise the safety of GNSS-dependent systems, with implications
for injury and economic damage.

Guided by NOTAMs, ADS-B data, and news reports, among other sources, it is possible to
narrow down the search for transient GNSS interference [247]. [10]’s technical approach
involves tuning the detection tests using these known sources of interference. Armed with
a highly sensitive means to detect interference, it will be possible to identify heretofore
unknown transient sources of GNSS interference over much of the globe from 2017 to
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the present. Additionally, this work has the advantage of a data set beyond compare:
three years of 100 Hz data-wiped complex IQ correlation products captured by the Fast,
Orbital, TEC, Observables, and Navigation (FOTON) receiver aboard the International
Space Station (ISS).

There are two basic interference categories that this analysis can expect to find: narrow-
band and wideband. The latter may be due to spoofing or matched-code interference.
Narrowband interference is the simplest and most common form of GNSS interference.
It entails broadcasting a narrowband waveform in navigation bands for denial-of-service
(DOS) purposes. On the other hand, a transmitter “spoofing” a GNSS signal broadcasts a
counterfeit signal intended to deceive the recipient into thinking it is authentic. Somewhere
in between these two techniques is matched-code interference, in which a GNSS satellite’s
pseudorandom ranging codes are broadcast sans navigation message; this is intended to
fool receivers into acquiring the signal, but deny them a navigation solution. It is also pos-
sible that unintentional interference may be detected; for example, radio signals produced
by malfunctioning electrical equipment or natural phenomena like solar radio bursts [81].
However, the former is less likely than intentional interference to be powerful enough to
detect from LEO, and the latter is relatively rare. Nevertheless, it is important to rule out
unintentional or natural interference to the extent possible before casting aspersions.

A simple technique by which GNSS interference can be detected is that of monitoring the
carrier-to-noise ratio, C/N0, also referred to as the carrier-to-interference-and-noise ratio
(or CINR) in the presence of interference. GNSS interference manifests as a decrease in
the C/N0 of an authentic signal by a magnitude unlikely to be caused by multipath, the
typical source of C/N0 variation. Once a likely interference source has been detected,
it may even be possible to narrow down its location on the globe by cross-referencing
interference episodes with navigation solutions. The estimated carrier-to-noise ratio for
each tracked signal is regularly reported by the receiver along with its navigation solutions,
but this work has access to lower-level, higher-frequency, more sensitive receiver outputs:
the complex IQ correlation products. Making the assumption that phase error remains
negligible, the I (in-phase) component may be substituted for the C/N0.

[10] extends existing methods for GNSS interference detection via C/N0 monitoring from
standard GNSS observables to higher-sampling-frequency complex correlation product
data, and evaluates these methods on likely persistent instances of GNSS interference
originating from hotspots identified in previous work.

The problem of identifying GNSS interference from data available to the receiver can be
thought of as a special case of the more general anomaly detection problem; that is, de-
termining whether or not observations of a stochastic process correspond to an expected
(nominal) model, or an alternative (anomalous) model. Anomaly detection has been stud-
ied extensively [255, 256, 257]. More general approaches ([256, 257]) may be appropriate
if the data domain is not amenable to analytical modeling. In the case of detecting GNSS
interference from a receiver mounted on a spacecraft — especially one as well-studied as
the ISS — it is possible for the model to incorporate patterns that may otherwise be classi-
fied as anomalies by a more domain-agnostic algorithm. One example of such features in
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the context of C/N0 monitoring is the regular occultation of the GPS space vehicles (SVs)
by the Earth. There are also features of the data that may be identified as anomalies, but
are not of interest to this work. For example, rapid signal fading due to ionospheric scin-
tillation [81, 258] is a natural phenomenon that is not as easily modeled. These features
must be identified or ruled out in some other way.

A common limitation imposed on anomaly detection techniques is the restriction to a sub-
set of the data, typically in the context of real-time detection [257]. As [10] studies historical
data, the analyses herein are not constrained in this manner; however, the sheer quantity
of data — years of 100 Hz data for each tracked signal — necessitates examining the data
in segments.

There is strong interest in developing low-cost methods of detecting GNSS interference
in order to (i) alert users that the navigation solutions may not be valid and (ii) if possible,
recover the authentic solution. As (ii) is generally not a concern for the ISS, only methods
to perform (i) are needed. A “low cost’’ solution is one that leverages quantities that are
observable to a typical GNSS receiver installation, in comparison to those available only
with specialized hardware [259]. Some common interference-detection metrics available
to a typical GNSS receiver are:

1. Carrier-to-Noise (density) ratio, C/N0 [260, 258, 81]

2. Received power (AGC gain) [260, 261, 258, 262, 81]

3. Spectral analysis [260, 81]

4. Number of observed signals [260]

5. Correlator output power [261]

6. Correlator output power variance [261]

7. Carrier phase vacillation [261]

8. Pseudorange outliers [263]

9. Signal quality monitoring (SQM) [258, 262]

10. Complex ambiguity function monitoring [264]

While the presence of an anomaly in one of these metrics can suggest interference, some
successful detection strategies use more than one in order to improve the probability of
detection or discriminate between different interference types [261, 258].

A problem related to anomaly detection is that of quickest detection, also referred to as
quickest change detection (QCD) [265]. The goal of quickest detection is to identify a
sudden statistical change in an observed signal with minimal detection delay. A key as-
sumption made in quickest detection theory is that the duration of this change is effectively
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infinitely long — a change occurs only once in the signal’s time history. More relevant to
this work is transient change detection (TCD) theory, which studies to the case in which
the change occurs only over an interval. A similar approach to the same underlying prob-
lem is termed offline change point detection[266]. Recently-published work in TCD has
been adapted to fit this problem and forms the core of the statistical framework used to
detect GNSS interference events.

GNSS such as GPS provide meter-accurate positioning while offering global accessibil-
ity, all-weather operation, and radio-silent reception. However, GNSS is fragile: its ser-
vice is easily denied by jammers or deceived by spoofers. GNSS spoofers are becoming
easily-accessible and low-cost, threatening GNSS-reliant systems [76, 145, 81]. Scientific
satellites have received spoofing-like GPS interference over Ukraine and the Middle East
[267, 268]. GNSS interference is not limited to military applications: the civilian maritime
and airline industries have frequent encounters widespread GNSS jamming and spoofing.
Corrupted Automatic Identification System (AIS) and Automatic Dependent Surveillance-
Broadcast (ADS-B) messages from vehicles are frequently reported [247]. GNSS interfer-
ence manifests as irregularities in AIS and ADS-B reports as these systems derive their
position from GNSS. Ships near in Shanghai have fallen as victims to GNSS spoofing
[151].

Fortunately, extensive progress in on-board GNSS spoofing detection and mitigation has
recently been made [78]. Reliable spoofing detection techniques even exist for challeng-
ing environments such as dynamic platforms in urban areas where strong multipath and
in-band noise are common [82, 79, 80, 65, 4]. Although reliable spoofing detection tech-
niques exist, GNSS security can be further enhanced by accurately geolocating the source
of interference.

Detecting and geolocating radio frequency (RF) signals is a coveted capability as it facili-
tates search-and-rescue, tracking, and spectrum monitoring. LEO-based receivers are a
proven asset for detecting, classifying, and geolocating terrestrial GNSS interference [10].
Emitter geolocation from Low Earth Orbit (LEO) offers worldwide coverage with a frequent
refresh rate, making it possible to maintain a common operating picture of terrestrial emit-
ters, e.g. GNSS jammers and spoofers. Moreover, LEO satellites’ stand-off distance from
terrestrial interference sources permits tracking authentic GNSS signals, enabling precise
time-tagged data captures from time-synchronized LEO-based receivers and precise orbit
determination.

General stationary emitter localization with multiple receivers has been extensively studied
[269, 270]. Time-synchronized receivers can exploit time- and frequency-difference of
arrival (T/FDOA) to estimate the emitter location. In T/FDOA techniques, the differential
Doppler and differential delay are first estimated, followed by the estimation of transmitter
location. Another multi-satellite technique is direct geolocation, which is a single-step
search over a geographical grid enabling estimation of the transmitter location directly
from the observed signals [271]. Direct geolocation outperforms the two-step method in
low signal-to-noise ratio (SNR) environments and short data segment scenarios.

51



Literature Review of PNT and GNSS Threats and Vulnerabilities to HATS

Geolocation of moving emitters with multiple receivers using T/FDOA measurements is
explored in [272, 273, 274, 275]. Geolocating moving transmitters becomes challenging
as the transmitter’s unknown velocity induces a Doppler shift. Rather than only estimating
the position as in the stationary case, the velocity must also be estimated. Accurately
geolocating a moving transmitter with a single receiver is impossible [276].

Several commercial enterprises such as Spire Global and Hawkeye360 have dedicated
constellations for spectrum monitoring and interference geolocation efforts. These LEO
constellations offer distributed time-synchronized LEO-based receivers whose data can
provide accurate emitter geolocation. However, planning simultaneous multi-satellite cap-
tures to enable T/FDOA-based and direct geolocation can be difficult and expensive. [11]
focuses on single-satellite platforms.

Single-satellite interference source geolocation accuracy is dependent on the transmit-
ted waveform. Accurately locating emitters with arbitrary waveforms using a single LEO
receiver is impossible in general: if the signal’s carrier cannot be tracked, only coarse
received-signal-strength (RSS) techniques can be applied for localization. However, if a
carrier can be extracted, accurate single-satellite-based emitter geolocation is possible
from Doppler measurements alone [277, 278].

The underlying technique of Doppler-based positioning was pioneered by research scien-
tists at Johns Hopkins Applied Physics Laboratory, who solved the orbit of Sputnik-1 by
analyzing the Doppler shift of the satellite’s transmitted signal in 1957. Following this, the
United States Navy deployed the first satellite-based geopositioning system (known as
Transit) in 1960, which adopted this technique. The Transit satellites transmitted carrier
frequencies at 150 and 400 MHz. Ground stations constantly looked for these transmis-
sions and calculated the received Doppler. From Doppler curve(s), an initial estimated
ground station position, and the transmitted orbit parameters, a least-squares estimator
could produce a location estimate with errors as small as 100 meters [279]. In recent de-
velopments, a new global navigation concept is studied that relies on carrier Doppler shift
measurements from a large LEO constellation [238].

A Doppler-based positioning technique much like that of Transit can be reversed for LEO-
based emitter geolocation. If a LEO-based receiver can extract a Doppler history from an
emitter, a geolocation estimate can be made. Doppler-based geolocation algorithms are
effective because the range-rate between LEO-based receivers and terrestrial emitters
varies rapidly over short captures. Performance bounds and error characterization for
LEO-based single-satellite Doppler geolocation are presented in [280, 281].

Doppler-based emitter geolocation with a single LEO-based receiver was also proven by
the University of Texas at Austin Radionavigation Lab (RNL). In collaboration with Cor-
nell University, the RNL developed a software-defined multi-frequency GNSS receiver
called FOTON that has been operating on the International Space Station (ISS) since
2017 [29]. Although emitter geolocation was not its original purpose, this single software-
defined receiver has proven effective at locating emitters. Its data have been used to
locate a powerful 70-watt matched-code jammer operating in Syria to better than 300 me-
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ters [254]. Localizing the emitter in Syria hinged on two lucky breaks: (1) the emitter was
transmitting a GPS-like signal from which a Doppler history could be extracted, and (2)
the emitter’s signals had quasi-cosntant carrier frequency as transmitted. In addition to
exploiting received Doppler, this work took into account transmitter clock rate errors to
refine the geolocation estimate.

One of the key assumptions of the prior work is that the emitter transmits at a quasi-
constant carrier frequency. The prior Doppler-based geolocation techniques falter if a
transmitter introduces any significant level of complexity to carrier-phase behavior, such
as frequency modulation or clock dithering. Assuming a nominally-constant transmitter
carrier frequency is appropriate for GNSS matched-code jammers, but is fallacious for
GNSS spoofers. GNSS spoofers do not transmit at a constant center frequency: they add
an extra unknown time-varying frequency component to the spoofed signals that imitate
the range-rate between spoofed GNSS satellite and the intend spoofed location. The
extra unknown time-varying frequency component renders raw observed Doppler-based
geolocation ineffective.

The range-rate between the LEO receiver and the terrestrial spoofer is common for each
spoofed signal. If all of the spoofing signals are processed, a GNSS receiver’s naviga-
tion solution estimator lumps any range-rate term that is common across all satellites into
the receiver clock offset rate. Therefore, the time history of the receiver clock offset rate
can be used for geolocation because it contains the range-rate between LEO receiver
and terrestrial spoofer. Embedded in the range-rate time history is information about the
transmitter’s position.

[11] makes three primary contributions. First, [11] introduces a methodology to remove
the unknown time-varying frequency component added by the GNSS spoofer, allowing
the true range-rate between LEO-based spoofer and terrestrial spoofer to be extracted
for geolocation. Second, the receiver clock rate offset time history can be corrupted by
transmitter motion, transmitter clock rate error, and the spoofing induced receiver clock
rate offset. Monte Carlo simulations are developed that investigate how these parameters
affect geolocation accuracy. Additionally, the proposed method is validated by simulating
the reception of a terrestrial GNSS spoofing signals on a LEO-based receiver. Lastly,
recent real-world GPS spoofing signals captured by a LEO-based receiver are analyzed.

2.3.2 Radar Interference

Frequency-modulated-continuous-wave (FMCW) radars operate by transmitting a sequence
of multiple linear chirps called a frame. After reflecting off of an object, the received signal
is mixed with a replica of the transmitted chirp sequence, resulting in a beat frequency
that indicates the range to the reflecting object. By examining the beat carrier phase shifts
across multiple chirps, a radar can estimate the Doppler shift. Furthermore, an FMCW
radar can estimate an object’s direction through the phase shifts across elements in its
antenna array. Since typical millimeter-wave (mmWave) FMCW radars use an intermedi-
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ate frequency (IF) bandwidth in the 10s of MHz and a chirp slope in the 10s of MHz µs−1,
these radars sample a thin sliver of the time-frequency spectrum at any instant, making it
unlikely that persistent interference will appear in the band of sensitivity and manifest as a
false reflecting object [282, 283]. While this processing is generally effective for prevent-
ing false objects from non-adversarial interference, it leaves open an avenue for spoofed
signals to be injected. By controlling the time-of-arrival and frequency offset of the spoofed
signal, an attacker can force the target receiver to see fake objects at any arbitrary range
and velocity. This type of attack could have drastic consequences for safe navigation on
public roadways. An attacker capable of forcing a target vehicle to detect false objects
could intentionally disrupt automated driver assistance systems (ADAS), causing unsafe
maneuvering and collisions. Since FMCW radars are the most widely used radars in au-
tomotive vehicles [284], such spoofing capabilities could have widespread ramifications.
Many studies have focused directly on the radar spoofing problem, demonstrating FMCW
spoofing attacks with off-the-shelf devices [285, 286], custom spoofing boards [287], and
spoofing on a realistic AV testbed [125]. The main limitation of this previous work is an
assumption that the spoofer already knows the target radar’s waveform, which is unlikely
in a real-world scenario. Furthermore, the advanced spoofing attack in [125] was carried
out using high-end test equipment, which is unlikely to be representative of actual radar
spoofing threats. While not directly used for spoofing, Gardill et al. proposed a method of
finding an unknown FMCW signal by analyzing the time-frequency spectrum of interfer-
ence when mixed with a local fast-sweep rate FMCW signal [288]. Their study was then
extended to demonstrate how such a tactic could be used to first estimate signal param-
eters, switch the local mixer to a CW signal to obtain precise timing, and then switch the
local mixer to a time-aligned replica of the transmitted signal [289]. Such studies show that
such a synchronization scheme is practical and that potential issues such as timing jitter
can be accounted for. However, they do not propose a rigorous method of estimating chirp
parameters, address parameter ambiguities, or analyze the optimality of mixing waveform
selections. Additionally, they do not address the impact of estimation error, nor estimate
Doppler shift, nor discuss tracking when the mixer is time-aligned. Other work has focused
purely on synchronizing FMCW systems in time and frequency when the signal shape is
known [290].

54



Literature Review of PNT and GNSS Threats and Vulnerabilities to HATS

3 Vulnerabilities, Threats, andMitigation for Local or Rel-
ative PNT Sensors

3.1 Roadside Sensing Technologies

A number of roadside sensing technologies are being considered or are in use for op-
erations, planning, and safety assessment purposes. Some of these technologies are
meant for temporary use; e.g. to collect data that can help in understanding future safety
mitigation; and others are installed permanently; e.g. to assist in automated traffic op-
erations. As explained in the next chapter, opportunities exist for these to augment the
sensing technologies found on vehicles that can be a part of a cooperative system. This
section introduces roadside technologies ancillary to direct PNT applications and identifies
vulnerabilities that must be considered and mitigated for reliable performance.

3.1.1 Pedestrian Safety

In recent years, cities across the US have been promoting active transportation modes,
such as walking and cycling, due to an abundance of environmental and economic bene-
fits. However, according to data collected by the National Highway Traffic Safety Admin-
istration, a total of 6,516 pedestrians were killed in vehicular crashes in the U.S. in 2020.
That reflects a 51% increase from fatalities over the last decade, while the share of walk-
ing trips has remained constant at 10.5%. Even accidents that do not involve fatalities
carry an enormous societal cost, including property and motor vehicle damage, produc-
tivity losses, medical and administrative expenses, mental trauma, pain, and increased
insurance premiums.

Some main causes of pedestrian crashes include distracted drivers, and failure to yield
right of way. Multiple recent studies have also detected implicit racial yielding bias against
pedestrians belonging to racial minority groups [291, 292]. As such, human error at mul-
tiple levels is a potential factor behind any pedestrian-vehicle collision. Consequently,
unless we swiftly implement innovative strategies in the coming years, we can anticipate
a significant escalation in both traffic congestion and safety issues. This concern is exac-
erbated by the projected 70 million population increase in the United States by 2045, with
emerging urban megaregions expected to absorb 75 percent of this population growth,
leading to a substantial rise in vehicle miles traveled.

In this context, enhanced levels of automation and communications within and between
vehicles, but also out between vehicles and infrastructure, which we will refer to as con-
nected and automated smart transportation systems (of which PNT services constitute a
critical element, if not the most critical element), can contribute in important ways to im-
prove mobility and enhance safety on US roadways, across the spectrum of road users and
multiple modes. Specifically, PNT systems that utilize insight from roadside transportation
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infrastructure can allow for effective collision aversion. For example, a connected system
can solve the “pedestrian around the corner” problem using roadside equipment (video
imaging, infrared detection, or LiDAR) that detect the presence, speed, and trajectory of
pedestrians (see Figure 4). In general, AI algorithms are applied to data gathered via cam-
eras, radar, LiDAR, and the vehicle control system. AI methods include computer vision
to interpret images and deep learning and neural networks to improve training algorithms
and conduct virtual tests to improve the vehicle’s ability to respond.

Figure 4: Illustration of the “pedestrian around the corner” problem

In considering the sensing of pedestrians, to this day, detection in the visible spectrum is
still a challenging task due to appearance variations, illumination variations, occlusions,
human motion variations, and background noise [293]. Thermal imaging also carries its
own set of challenges, mostly around limitations in temperature variation. Scoring at best
with accuracy rates of around 99% and varying dramatically among modes of transport
being detected, no combination of technologies appears yet to be accurate or reliable
enough for a sole determination in “life or death” PNT applications [294]. It is also possible
to spoof a detection of objects. As explained later in sections on cooperative sensing,
these need not discount the value of roadside technologies, as stronger resilience can be
found when multiple technologies and applications are used together.

We conducted a comprehensive literature review on the state-of-the-art and the state-
of-the-practice automated pedestrian data detection technologies. The outcome of this
review is an assessment of the different automated data collection methods, including
well-established and emerging AI- and sensor-based technologies, to evaluate their ap-
propriateness and efficacy in different environments and for supporting data collection and
usage efforts. Furthermore, we conducted a nationwide survey to identify best practices
in the collection, analysis, and application of pedestrian-related data for safety and op-
erational purposes. Additionally, we interviewed key stakeholders who have previously
implemented these techniques to gain insights into their lessons learned and gather their
expert qualitative opinions on the effectiveness of these technologies. In summarizing
findings, our primary focus will be on Automated Video and LiDAR technologies, as these
have emerged as the most promising solutions for PNT-related safety applications.

An online survey was sent to 194 experts within related agencies, institutions, and com-
panies [294]. The purpose of the survey was to determine the extent to which different
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pedestrian count and detection technologies are being used, pedestrian technology at-
tributes, use cases, and customer satisfaction levels. Out of the 194 recipients, 63 survey
responses were submitted. Example of the responding agencies include Texas, Florida,
Utah, Minnesota, and Massachusetts departments of transportation (DOT). The survey
results are summarized below:

• Technology Types: 37% reported using passive infrared sensors, 21% used automated
video technologies, and 18% used pressure or acoustic pads. However, the proportion
of agencies using LiDAR and thermal imaging is significantly lower. Additionally, less
than 5% of the agencies reported that they are implementing experimental programs for
evaluating LiDAR and camera technologies.

• Vendors: The results show that Miovision products are the most commonly used for
pedestrian counts. Regarding LiDAR technologies, only two respondents provided ven-
dor names, Velodyne and BlueCity.

• Automated Video Technology Advantages and Disadvantages: Respondents re-
ported several benefits, including a wide coverage area, the ability to use raw video
files for safety assessment, high accuracy, vandalism resistance, ease of installation,
no need to cut into the road, easy auditing, comprehensive coverage of pedestrian
movement, and accurate volume and mode split data. It is also relatively affordable
to procure and can be integrated with signal detection equipment. However, there are
several disadvantages to consider. These include additional processing and subscrip-
tion fees, high recurring costs, limitations in nighttime or windy conditions, susceptibility
to weather-related challenges like fog and glare, potential algorithmic issues, and a re-
quirement for AC power, usually at a signalized intersection.

• LiDAR Technology Advantages and Disadvantages: Advantages include the ability
to gather new types of data, and high accuracy. On the downside, this method has not
been thoroughly tested yet, and it entails a high cost for gathering, storing, and process-
ing more refined or granular pedestrian information. Additionally, most applications do
not require such granular data.

• Thermal Imaging Technology Advantages and Disadvantages: Respondents re-
ported that this type of technology is more accurate than video technology in dark con-
ditions and the presence of occlusion. However, they had concerns regarding lack of
familiarity and testing, doubts related to accuracy and applicability for PNT.

3.1.2 Classical Detection Technologies

While this study focuses on infrastructure-based advanced pedestrian detection technolo-
gies, this section provides a brief explanation of traditional methods for pedestrian count-
ing to give context to the discussion on emerging technologies and data sources. Clas-
sical techniques can be either manual or automated, with manual methods involving a
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required action (e.g. pushing a button) and automatic methods using sensors such as
passive/active infrared, pressure mats, and radio beams.

Historically, agencies have relied on signal actuation buttons to communicate the presence
of a pedestrian with drivers and traffic signals. Blanc et al. [295] conducted a pilot study
to investigate the use of pedestrian signal actuation as a proxy for pedestrian volume.
They found a linear relationship between pedestrian phase logs and the actual pedes-
trian volumes with an R2 value of 0.70. While the analysis suggests that it is possible to
make reasonable estimates of pedestrian volumes from this kind of pedestrian actuation,
it depends upon site-specific adjustment factors.

In other cases, infrared sensors, which detect pedestrians by evaluating the difference
between background thermal energy and heat emitted by people as they pass through
the detection area, are used. TrailMaster, TRAFx, and EcoCounter are three commonly
used infrared count device manufacturers. Pressure pads are another well-established
technology. They detect pedestrians as they move over a pad using changes in weight.
However, this type of technology is associated with many limitations. The Eco-Counter
SLAB is the most used product in the market.

3.1.3 Emerging Sensing Technologies

The emerging sensing technology for Pedestrian Position Navigation and Timing (PNT)
is a critical area of development that holds significant potential for improving pedestrian
safety and navigation. This technology encompasses various innovations and approaches
designed to enhance the accuracy, reliability, and versatility of pedestrian tracking and
timing. Some key aspects and advancements in this field include:

• Computer Vision and Deep Learning

• Thermal Imaging Solutions

• LiDAR-Based Solutions

• Multi-Sensor Fusion

The upcoming sections will briefly discuss the history and main advancement in these
technologies in the context of pedestrian detection and PNT. Also Tables 4 and 5 include
an overview of the major finding related to the advantages and disadvantages of each
technology, as well as the available vendors.

Computer Vision and Deep Learning
Computer vision, powered by deep learning algorithms, plays a pivotal role in pedestrian
PNT. Advanced cameras and image processing techniques can identify and track pedes-
trians, even in complex urban settings.
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In imaging-based technologies, one of the key tasks is to detect the presence of pedes-
trians in a video sequence or an image. In practice, this corresponds to recognizing the
smallest rectangular bounding boxes that enclose the pedestrians [296] (see Figure 5).
In order to automatically extract pedestrian information from video, objects must be de-
tected, tracked from one frame to the next, and classified by type as pedestrians and non-
pedestrians. (Note that different classifications may be needed for multi-modal or multi-
purpose data collection). Deep learning methods are prominent techniques for achieving
this task through the development of algorithms such as the You Only Look Once (YOLO)
series and Faster-Region-based Convolutional Neural Network (Faster-RCNN) [297].

A typical computer visioning algorithm that detects pedestrians from traffic images involves
the pipeline shown in Figure 6. The first step is collecting video streams. The next step
is video preprocessing followed by object (i.e., pedestrian) detection which can either be
conducted using traditional machine learning or deep learning algorithms.

Figure 5: Example of pedestrian detection and tracking

Figure 6: Computer visioning pipeline

Thermal Imaging Solutions
Thermal cameras are marketed as solutions for detecting pedestrians when the presence
of visible spectrum is challenged, which include but are not limited to appearance varia-
tions, illumination and weather variations, occlusions, and human motion variations [293].
Unlike visual cameras, they operate like passive infrared sensors and generate infrared
images by capturing the brightness intensity corresponding to the temperature and radi-
ated heat of objects in the scene. Consequently, pedestrians that pass within the camera’s
field of view are detected by looking at heat signatures that are independent of illumina-
tion and appearance variations [298], [293]. Thermal image processing for pedestrian
detection is composed of two steps: image capturing followed by automated image pro-
cessing which in turn is subdivided into feature extraction and feature classification [299].
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Both steps for thermal image pedestrian detection have shared characteristics with video-
based detection technologies. Figure 7 shows the steps for capturing and processing
thermal images for detecting pedestrians.

Thermal imaging technology is relatively new in the field of pedestrian counting, and its
performance is still not fully known [300]. Only a few DOTs have reported their observa-
tions based on field experiments. Oregon DOT investigated thermal cameras for traffic
signal detection purposes using FLIR’s TrafiSense thermal traffic camera [301]. The un-
dercounting rate was 49% (percentage of false negatives) while the percentage of over-
counting was 5% (percentage of false positives). The results revealed that thermal cam-
eras counted bicycles accurately in a controlled environment, but failed in real-life inter-
sections. Florida DOT also performed field testing using FLIR TrafiOne thermal camera.
For the field deployment at midblock crosswalk locations on two sites, the system resulted
in an overall accuracy of 92%. The experiments showed that thermal cameras can detect
pedestrians and slow-moving bicyclists, pedestrians on skateboards, and persons with
disabilities, can be attached on the same pole as RRFBs and pedestrian crossing signs,
can instantaneously trigger a traffic signal controller to request a pedestrian signal, similar
to a push button, and can remove a call if the pedestrian walks out of the detection zone
before the call is served.

Figure 7: Conceptual framework for thermal pedestrian detection

LiDAR-Based Solutions
LiDAR sensors are increasingly being utilized for PNT applications. These sensors emit
laser pulses to create precise 3D maps of the surrounding environment, allowing for ac-
curate pedestrian detection and tracking. They are particularly effective in low-light con-
ditions and adverse weather. Several research papers have explored the applicability of
the LiDAR technology for pedestrian recognition and data collection (sometimes referred
to as infrastructure-based detection systems versus vehicle-based detection systems).
Compared to on-board LiDAR, roadside LiDAR sensors can cover a much wider detec-
tion range rather than just the environment vehicle. Additionally, roadside LiDAR has more
advantages than onboard LiDAR because the latter require other supportive data sources,
such as high-resolution 3D maps and GPS information. However, roadside LiDAR sensing
systems are expected to work individually [302].
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The LiDAR starts by emitting pulses of infrared light from the laser diode. A CPU records
the time and direction of shooting. The pulse then travels and hits an object which in turn
reflects a proportion of the infrared light where it is detected by a receiver. Then, the time
and energy at which the infrared light is received are registered. Finally, AI algorithms
pick up the raw data to create a complex 3D point cloud of the surface it is measuring
based on its reflections and perform pedestrian detection and tracking. That is achieved
through a set of steps which start with pre-processing the 3D point cloud by performing
background filtering and object clustering then continues with pedestrian/vehicle classifi-
cation and tracking [302]. Refer to Figure 8 for an example of a LiDAR 3D point cloud and
processed clusters.

The 2019 study conducted by the Nevada Department of Transportation (DOT) repre-
sents one of the pioneering implementations of infrastructure-based LiDAR technology.
Figure 9 shows the setup used for implementation. The detection and tracking rates of
the proposed roadside LiDAR data processing procedure are all above 95%, and the valid
detection range is about 30m (in one direction). The case study also investigated the use
of LiDAR in bad weather conditions. Results showed that false rates increase from 0.14%
in good weather to 1.01% in rainy weather and 1.87% in snowy weather.

Figure 8: Example of pedestrian detection using a LiDAR generated 3D cloud [303]

Multi-Sensor Fusion
Combining data from various sensors, such as LiDAR, radar, cameras, and inertial sen-
sors, enhances the accuracy and reliability of pedestrian PNT systems. This multi-sensor
fusion approach provides a more comprehensive understanding of a pedestrian’s (and all
road users’) position and movement. In practice, only products that combine thermal and
RGB technologies are available. However, fusing data RGB, radar, and LiDAR is still in
the research phase. Overall, the objective of these studies is to fuse feature-rich informa-
tion from RGB images with sparse but reliable depth information from LiDAR point clouds
or Radar data in order to improve the reliability of pedestrian detection systems. Some of
the most recent advancements in this field can be found in [304, 305]. Figure 10 shows
an example of a pedestrian detection setup that includes multiple sensors.
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Figure 9: Infrastructure-based LiDAR implementation by Nevada DOT [302]

Figure 10: Example of a setup for Multi-Sensor Fusion [305]
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Table 4: Summary of findings at the technology type level [294]

 

 

Technology Advantages/Benefits Disadvantages/Challenges 

LiDAR 

• Reliable: works in different lighting and weather conditions  

• Overcomes occlusion  

• Overcomes lighting issues 

• Can capture multi-modal traffic data  

• Non-intrusive technology  

• 360o view 

• One LiDAR at the corner of the intersection is enough (which reduces installation and maintenance costs) 

• Can precisely measure the distance between objects; better suited for near-miss-detection application  

• Geolocates objects on a map  

• Simple installation requires ½ to 1 day 

• More accurate speed data 

• Can be used to ensure pedestrian safety on movable bridges 

• Best suited for real-time traffic control 

• Companies other than Velodyne have cheaper LiDAR sensors that are only 180o 

• More accurate than video detection 

• Large detection range 

• Tracks data without taking pictures 

• Can differentiate between axles, speeds, and shapes 

• Has not been extensively tested yet 

• Agencies are reluctant to invest due to lack of experience with the technology and its accuracy 

• High cost of gathering, storing, and processing more refined/granular pedestrian information, which MPOs do not need  

• There aren’t many vendors on the market 

• Velodyne has the only sensor in the market that has been tested for pedestrian detection and counting 

• Most agencies don’t need 365/24 data 

• Lack of labeled data for training AI algorithms 

• Permanent LiDAR may cost over $20,000 

• Tradeoff between height and blind spots 

• Not justified to be used for intersections 

• AV LiDAR algorithms don’t work for roadside LiDAR 

• Sensor surface dirt can influence performance 

• Startups have a hard time of getting projects because transportation agencies are not very interested in using LiDAR 

• Counts large trucks as 2 vehicles 

• Blind spots with puck sensor 

• Cannot perform facial recognition  

• Does not capture license plates 

Camera 

 

• Best for multi-modal counts  

• Most vendors provide shelf-ready solutions 

• Video can be offloaded to a local third party for processing to save money 

• Can be used in challenging settings where infrared does not work, such as crowded locations and shared 

paths 

• Same technology can be used for detection and counting with a more complex algorithm 

• Video data can be used for many applications beyond pedestrian detection and counting 

• Edge computing overcomes storage issues 

• Edge computing overcomes security issues  

• Most vendors have clear security and privacy measures 

 

• Expensive compared to traditional IR technology  

• Difficult to evaluate products and decide on a long-term procurement strategy 

• Agencies don’t have large budgets to perform enough experimentation 

• Quality control standards are not established 

• Glare creates occlusions to data collection, even for the best cameras 

• Questionable accuracy in the dark and bad weather conditions  

• Shadows result in double-counting pedestrians 

• Accuracy definitions may be misleading: detection accuracy is different from count accuracy 

• When connecting to signal timing, multiple stakeholders need to be involved, and agencies need to get vendors on board 

• Significantly undercounts bikes in high-bike-volume locations 

• Different vendors use a different number of cameras 

• Micro-mobility adds noise and lowers performance 

• Edge computing does not allow accuracy checks 

• The system misses detection in the early morning and in dark/poorly lit conditions 

• Temporary products have battery limits and expensive hourly video processing fees  

• Security and political concerns  

• Existing infrastructure is low-tech and not suitable for smart devices 

• High recurring and maintenance costs  

• Permanent installation requires updating the communications network and infrastructure 

• Most vendors require purchasing new cameras 

• Video capabilities are not needed to count pedestrians on non-shared paths 

Using CCTV and offloading to a third party: 

• CCTV cameras do not have a proper field of view at intersections which deteriorates the accuracy and increases the need for 

off-the-shelf products  

Thermal 

• Mostly used for pedestrian detection 

• FLIR has several product offerings  

• More accurate detection than video technology in dark conditions and in the presence of occlusion 

• Agencies are not familiar with this technology for smart traffic monitoring 

• Needs more testing 

• Limited detection range 

• Agencies need many sensors per approach 

• Does not distinguish between pedestrians and cyclists 

• Limited operating temperatures of the equipment 

In-House 
Solutions 

• Generally cheaper for system management and operation 

• Quarter the procurement price of off-the-shelf products 

• Most technologies are not very sophisticated and can be easily replicated in-house 

• Allow for more customization 

• If DOT owns the equipment, it can help small municipalities that can’t afford consultants 

• Cheaper units allow spending more money on achieving a spatial distribution  

• Require specialized personnel 

• Need to have a large active transportation program to develop, coordinate, and manage such as effort 

• Require more time and effort 

• Acquiring electronic components can be a big problem 

• Cloud-enabled communications are associated with service fees that add up quickly 



Table 5: Summary of findings at the product/vendor levels [294]

 

 

 
P

ro
du

ct
 

A
cc

u
ra

cy
 

C
os

t 

# 
Se

ns
or

s 
or

 
C

am
er

as
 

V
ie

w
 a

nd
 R

an
ge

 

P
ow

er
 S

ou
rc

e 
an

d
 

In
fr

as
tr

uc
tu

re
 

R
eq

u
ir

em
en

t 

D
at

a 
T

ra
n

sm
is

si
on

 

O
n

lin
e 

P
la

tf
or

m
 

E
d

ge
 P

ro
ce

ss
in

g 

L
iv

e 
F

ee
d

 

N
ig

ht
 V

is
io

n
 

T
ra

ff
ic

 C
on

tr
ol

le
r 

C
on

ne
ct

io
n 

A
p

pl
ic

at
io

n 
an

d 
O

u
tp

ut
 T

yp
es

 

R
ep

u
ta

ti
on

 a
n

d 
R

el
ia

bi
lit

y 
 

A
d

va
nt

ag
es

 

D
is

ad
va

nt
ag

es
 

Velodyne Puck Sensor + 
Blue City AI  
LiDAR technology 
 

 
Source: e-motec (2021) 

 98.7% 

Procurement 
cost: 
 Puck sensor: 

$4,800 
Recurring 
cost: 
 Unknown, 

depends on 
processing 
algorithms 

1–2 / 
intersection 

360o  
100 m 

 Pole 
 AC 

power 
source 

 IP 
addresses 
 

100 Mbps 
Ethernet 
connection 

     

 Permanent  
 Intersection or midblock locations 
LiDAR sensor: 
 Cloud of surface points (x,y,z) 
 Distance between a data pt and sensor 
 Timestamp 
 360o view 
Blue City AI: 
 Detection and classification of 

vehicles, cyclists, pedestrians 
 GIS trajectory data 
 Turning movement  
 Speed of road users 
 Near-miss detection  
 Red light violation 
 Jaywalkers 
 % of the time a crosswalk is used by 

pedestrians 
 Automated traffic signal performance 

matrix (ATSPM) 
 Wrong way detection 

 Being 
piloted by 
CoA 

LiDAR sensor: 
 Very large detection zone  
 Reliable in all light and weather 

conditions 
 High security and privacy  
 High accuracy 
 Low number of sensors required per 

intersection 
 
Blue City AI: 
 Provides surrogate safety analysis 

platforms to help city planners 
 Real-time access to signal performance 

metrics 
 Real-time access to safety metrics 
 Very large detection zone  
 Wide selection of outputs and metrics  
 AI-based algorithm 
 

 Not widely used  
 Most agencies don’t need 365/24 data 
 

Velodyne Puck Sensor + 
LiDAR Matrix Inc. AI 
LiDAR technology 
 

 
Source: LiDAR Matrix 
ASWS Speed Study (n.d.) 

 99.5% 
detection 
accuracy 

 >98% 
traffic count 
accuracy 

Recurring 
cost:  
 $1,000–

1,500 for 
one day of 
data 

1 / 
intersection 

360o  
90 m 

 Traffic 
signal or 
light pole 

 AC 
power 
source 
(optional) 

Manual      

 Temporary (battery life of 3–4 days) 
 Detection and classification of 

vehicles, cyclists, pedestrians 
 GIS trajectory data 
 Speed  
 Turning movement 

 Developed 
for Nevada 
DOT and in 
use in ~50 
locations. 
Implemente
d for smart 
RRFB in 
Las Vegas. 

 LTE wireless connection for system 
status (battery life, data logging status, 
available storage space) 

 High accuracy  
 Wide range of outputs  
 Only one sensor is needed to cover an 

entire intersection 
 Comparable price to automated video 

technology 

 Uses feature engineering instead of deep 
learning 

 Need to change batteries every few days 
 Sensor surface dirt can influence 

performance 
 A permanent arrangement would cost 

around $20,000 

Miovision Scout camera 
Integrated video technology 

 
Source: Miovision 
Technologies (2021) 

 >95%  

Procurement 
cost: 
 $5,000 
Recurring 
cost: 
 $10/hr video 

processing 
fee (can also 
use third-
party 
algorithms) 

2 / 
intersection 

90°  Sign or 
pole 

Manual or 
4G/LTE 
cellular 

     

 Temporary (72 hours) 
 Pedestrian, cyclist, vehicle, and e-

scooter counts 
 Turning movement diagrams 
 Lane-by-lane volumes 

 Trusted and 
frequently 
used product 

 Portable  
 Can download video to be analyzed by a 

third party 
 Easy to install  
 Limited paperwork is needed. Can be 

installed without permission from 
multiple stakeholders 

 Miovision allows manual access to the 
data to avoid annual subscription fees 

 Expensive video processing fees 
 Does not have real-time access 
 Limited battery life 



Table 5: Summary of findings at the product/vendor levels (cnt’d.)

 

 

P
ro

du
ct

 

A
cc

u
ra

cy
 

C
os

t 

# 
Se

ns
or

s 
or

 
C

am
er

as
 

V
ie

w
 a

nd
 R

an
ge

 

P
ow

er
 S

ou
rc

e 
an

d
 

In
fr

as
tr

uc
tu

re
 

R
eq

u
ir

em
en

t 

D
at

a 
T

ra
n

sm
is

si
on

 

O
n

lin
e 

P
la

tf
or

m
 

E
d

ge
 P

ro
ce

ss
in

g 

L
iv

e 
F

ee
d

 

N
ig

ht
 V

is
io

n
 

T
ra

ff
ic

 C
on

tr
ol

le
r 

C
on

ne
ct

io
n 

A
p

pl
ic

at
io

n 
an

d 
O

u
tp

ut
 T

yp
es

 

R
ep

u
ta

ti
on

 a
n

d 
R

el
ia

bi
lit

y 
 

A
d

va
nt

ag
es

 

D
is

ad
va

nt
ag

es
 

TrafficLink 
Integrated video technology

 
Source: SmartCitiesWorld 
(2020) 

 99% count 
accuracy  

 97% 
detection 
accuracy 

 

Procurement 
cost: 
 $14,900 

(includes 
hardware 
and 
software) 

Recurring cost 
(optional add-
ons):  
 $500/yr 

signal 
communicat
ions 

 $750/yr 
continuous 
counts 

 $750/yr 
safety 
analytics 

1 / 
intersection 

360o 
90 m 

 Mounting 
height of 
28–30 ft  

 Traffic 
pole  

 Mast arm 
 Signal 

post 
 AC 

power 
 

Manual or 
4G/LTE 
cellular 

     

 Permanent 
 Designed for intersections  
 
 Stop bar detection  
 Vehicle, pedestrian, and cyclist count 

and turning movement count 
 Pedestrian delay 
 Occupancy ratio 
 Vehicle classification  
 Red light violation  
 Pedestrian compliance reports  
 Corridor travel time 
 ATSPM 
 Interactions with controller for advance 

detections 

 City of 
Cambridge 

 CoA 
 Ohio DOT 
 

 Only one camera is required per 
intersection 

 Can view crosswalks and stop bars on 
all approaches  

 Trafficlink web-based portal 
 Video and detection live stream through 

the portal   
 Provides signal phase status for 

operations 
 Provides alerts on operations status 

(power loss, low battery, telemetry 
unavailable) 

 Degraded video quality for privacy, 
storage, and streaming reasons 

 Local options for video storage that 
allow troubleshooting  

 Manually configurable detection zones  
 Base pricing includes 24/7 detection 
 If an agency has connectivity at the 

intersection (through video management 
systems (VMS)) it can stream in real-
time (using RTS protocol) for no extra 
fee; otherwise, it needs to pay for the 
signal communications add-on (cellular 
device connection)  

 Can only view the immediate 
intersection  

 Doesn’t get to the upstream distance 
(450 ft dilemma zone operation) 

 Tradeoff between mounting height and 
coverage range. Needs to be mounted on 
a high location.  

 Need to set up communications 
independently or pay extra fees  

 Continuous counts are only available for 
an extra fee 

Spack Solutions’ 
countCAM3 
Integrated video technology 
 

 
Source: Spack Solutions 
(2023) 

Unknown 

Procurement 
cost: 
 $1,300 
 $300 

external 
battery pack 
(optional) 

Recurring 
cost: 
 ~$300 for 

24-hr video 

1 / 
intersection 

Unknow
n 

 Sign or 
pole 

Download 
data over 
Wi-Fi or 
hardwired 
connection 

     

 Temporary (84 hours) 
 Intersection 
 Turning movement counts 
 Vehicular, pedestrian, and bicycle 

counts  
 Vehicular classification 

 Tried by 
Delaware 
Valley 
Regional 
Planning 
Commission 

 Cheap procurement cost 
 Agency can pre-schedule when the 

camera records video 
 3-day turnaround service 
 Manual video counts  
 High accuracy  

 Short battery life 
 Limited functionality 

Eco-Counter CITIX – AI 
Integrated video technology 

 
Source: Eco-counter (2023) 

95% 

Procurement 
cost: 
 $10,900 
 ~$2,500 for 

installation 
assistance 
(required) 

 $400 
shipping 

Recurring 
cost: 
 ~$400/yr 

per unit 

Unknown 20 m 

 5–7 m 
mounting 
height 

 Traffic 
pole  

 AC or 
DC 
power 
(does not 
come 
with a 
battery) 

3G/4G 
connection 

     

 Permanent  
 Designed for intersections 
 Pedestrian, cyclist, two-wheeler, and 

vehicle counts 

 Clients are 
generally 
happy 

 A pilot study 
by NCDOT 
did not 
recommend 
it 

 Will be 
tested by 
TxDOT in 
the summer 
of 2022 

 Self-contained (does not require access 
to signal) 

 Less expensive than Miovision  
 High-precision optical sensor (4K)  
 High precision for high-volume areas 
 Wireless data extraction 
 Has a wide-angle optical sensor that 

allows the sensor to cover several 
detection areas on the same site (several 
counting lines—user-configured) 

 Suitable for busy urban areas 
 Access to Eco-Visio online platform 
 Requires zero calibration 

 Not widely used 
 Limited information available 
 Difficult installation (requires vendor 

installation assistance) 
 Functionality specific to counting 
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Numina  
Integrated video technology 

95% 

Procurement 
cost: 
 ?? 
Recurring 
cost: 
 $1,500/yr 

per sensor 

1 / approach 
for large 
intersections 

90o  
40 m  

 Sign, 
pole, or 
building  

 AC 
power 

Cellular 
LTE 
connectivit
y 

     

 Permanent 
 Intersections or midblock  
 Pedestrian, cyclist, and vehicle counts 
 Location-based activity heatmaps 
 Speed (categorical) 
 Accuracy reports 

 FDOT and 
Louisiana 
DOT pilots 
indicated 
low 
accuracy 

 Edge processing, which guarantees 
privacy 

 Near-real time 
 Quarterly retraining of the algorithms 
 Hardware costs vary based on the 

number of sensors purchased. More 
sensors are discounted. 

 Involved in many pilots 

 Rain can damage the units 
 Extreme weather affected reliability 
 Low accuracy, especially in crowded 

and shared paths  
 Recurring data subscription fees  
 Lose access to the sensor completely if 

recurring fees are not paid. The sensor 
itself does not have storage. 

 Cannot be used on fast highways and 
arterials. Cannot detect vehicles above 
65 mph very well.  

Street Simplified 
Integrated video technology 
 

 98% 
counting 
accuracy  

 90% overall 
accuracy 

Recurring 
cost: 
 ~$5,000 per 

intersection 
 Price is 

affected by 
the 
complexity 
of the 
location and 
the number 
of days 

2 / 
intersection 

Unknow
n 

 Mounting 
location 

Manual      

 Temporary (1–7 days) 
 Intersection or midblock  
 Counts cars (vehicle classifications), 

pedestrians, bikes 
 Vehicle trajectories 
 Near misses  
 Red light violation 
 Speeding  
 Jaywalkers 
 Pedestrian and cyclist compliance 
 Intersection blocking 
 Safety report 

 Worked with 
the City of 
Houston and 
over 200 
locations 

 Caltrans 

 High-resolution video  
 Moving HQ to Austin soon  
 Can adapt the functioning to the 

environment 
 Does not require an external electricity 

source 
 Can’t read license plates 
 Can’t detect faces 
 Data is stored on the cloud 
 Client has full access to data on the 

cloud 
 Client can download video 
 Vendor is responsible for installing the 

equipment  

 The client does not own the equipment 
 Results of pilot studies are not published 

yet 
 Company did not provide details about 

the equipment used  

Boulder AI DNN Node  
Data processing solution 

Source: Boulder AI (2023) 

Unknown Unknown 
1 / 
crosswalk 

Depends 
on the 
camera 

 Traffic 
pole  

 AC 
power 

SD 
storage, 
connected 
to the 
internet 
over a 
cellular 
modem 

     

 Permanent 
 Intersections 
 Multimodal continuous counts, 

including lane and turning movement 
analytics 

 Near-miss detection 
 Detects pedestrians and bikes at 

intersections and crosswalks  
 Speed detection  
 Red light violation 
 Turn infractions 
 Wrong way detection  
 License plate recognition, make/model 
 Advance and stop bar detection 

 Not 
recommende
d by MAG 
and 
Massachuset
ts DOT 

 

 One node supports up to 4 camera feeds 
 Works with inputs of CCTV cameras 
 Provides real-time data 
 Allows remote data management and 

service configurations 
 Can be used to implement automated 

touchless crosswalks, extend or recall 
crosswalk phase for safer crossings, or 
inform drivers via changeable or blank 
out signs  

 1080P resolution required for pedestrian 
detection 

 Does not distinguish bikes from 
pedestrians 

 Requires one camera per crosswalk 
 Overcounts by 79% 
 Counting accuracy is dictated by the 

lighting conditions, apparel of the 
pedestrian/bicyclist, and party size 

 Does not work very well with CCTV 
cameras due to their low resolution and 
improper view range 

Boulder AI DNN Cam 
Camera-integrated solution 

 
Source: Boulder AI (2023) 

Unknown Unknown 
1 / 
crosswalk 

83o 
90 m 

 Traffic 
pole  

 AC 
power 

SD 
storage, 
connected 
to the 
internet 
over a 
cellular 
modem 

     

 Permanent 
 Intersections 
 Multimodal continuous counts, 

including lane and turning movements 
 Near-miss detection 
 Detect pedestrians & bikes at 

intersections and crosswalks  
 Speed detection  
 Red light violation 
 Turn infractions 
 Wrong way detection  

 Not 
recommende
d by 
Massachuset
ts DOT 

 

 4k resolution camera 
 Provides real-time data 
 Allows remote data management and 

service configurations 
 Can be used to implement automated 

touchless crosswalks, extend or recall 
crosswalk phases for safer crossings, or 
inform drivers via roadside or blank out 
signs  

 Does not distinguish bikes from 
pedestrians 

 Requires one camera per crosswalk 
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 License plate recognition, make/model 
 Advance and stop bar detection 

Currux Vision — 
Autonomous AI Systems 
Data processing solution 

 98% count 
accuracy 

 97% 
detection 
accuracy  

 Speed with 
±2 mph 
accuracy 

Unknown 1 / approach 
Depends 
on the 
camera 

 Traffic 
pole  

 AC 
power 

4G/Wi-Fi      

 Permanent 
 Turning movement counts at 

intersections along with colored dots 
for different classes of modes (vehicle, 
pedestrian, bike) 

 Vehicle classifications and speed 
studies 

 Trajectories  
 Speed 
 Wrong way detection and notification 
 Corridor travel time 
 ATSPM 
 Real-time near-miss notifications 
 Red light violation  
 Speeding  
 Crosswalk violation 
 Stop sign violation 

 Used in San 
Jose 

 Recommend
ed by MAG 

 Capable of running a video from a 
CCTV camera 

 AI node can be connected to the internet 
over a cellular modem 

 Good accuracy 
 The system is flexible and can operate 

on highways, intersections, and city 
streets 

 Edge capability improves security  
 Based in Houston, TX 

 Counting accuracy is dictated by the 
lighting position and party size 

 Missed detections are more likely in 
early morning and late evening 

 Requires one camera per crosswalk 

Gridsmart 
Camera-integrated solution

 
Source: Cubic (2022) 

 92% 
detection 
accuracy 

 98% count 
accuracy 

Procurement 
cost: 
 ~$18,000 
Recurring 
cost: 
 $0 

 

1 / 
intersection 

180° 
75 m  

 Mast arm, 
off of a 
luminaire, 
or off of a 
strain 
pole 

Data can 
be stored 
on the 
client’s 
server, 
cloud, or 
USB 

     

 Permanent  
 Intersections 
 Vehicle counts on roadway segments 
 Turning movement counts at 

intersections  
 Vehicle classifications 
 Interactions with controller for advance 

detections 

 Not 
recommende
d by MAG  

 Only one camera per intersection 
 Does not require any calibration, ever 
 Does not have to be aimed or focused 
 Easy to install 
 No recurring or licensing fees 

 Only works with GRIDSMART cameras 

Iteris Vantage Vector with 
Vantage Next 
Camera-integrated solution 

 
Source: Iteris (2020) 

 90% count 
accuracy  

 98% 
detection 
accuracy 

Procurement 
cost: 
 >$12,000 
Recurring 
cost: 
 ?? 

1 / 
crosswalk 

50°  
120 m 

Unknown Unknown      

 Permanent  
 Intersections 
 Bi-directional pedestrian, bicycle, and 

vehicle counts 
 Pedestrian speed data 
 Detection alerts 
 Turning movement counts at 

intersections  
 Vehicle classifications 
 Corridor travel time 
 ATSPM with pedestrian delay and 

conflicts 
 Interactions with controller for advance 

detections 

 Recommend
ed by MAG 
and FDOT 

 Includes video and radar technology 
 Very accurate 
 Large detection area 
 Iteris has multiple product offerings 

 Expensive 
 Results of pilot studies are not 

available/published 

TrafiOne – FLIR 
Thermal camera solution 

 99% 
detection 
accuracy 

Procurement 
cost: 
 $6,000– 

8,000 per 
approach 

2 / 
crosswalk 

95° 
15 m (8 
detection 
zones 
can be 
defined) 

 Traffic 
pole  

 AC 
power 

 Cellular 
modem  

 Direct 
plug-in 

     

 Permanent  
 Intersections or midblock crosswalks 
 Tracks waiting and crossing 

pedestrians and bicyclists in urban 
environments 

 Integrated 
with 
TAPCO’s 
Wrong-Way 
Alert and 

 Online platform for live video 
visualization and access data and review 

 Very high detection accuracy of 99% 
 Very accurate for vehicle counts  
 Flexible systems architecture 

 Not very suitable for counting 
 Cannot distinguish pedestrians from 

bikes, but FLIR will be releasing a new 
module to do this in the future 
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Source: FLIR (2022) 

 Not very 
suitable for 
counting 

 

Recurring 
cost: 
 $35–50/ 

month for 
cellular 
service 

 ?? optional 
license for 
live feed 

to the 
camera 

 Can be 
retrofitte
d with 
5G 
cellular 
antennas 
to 
integrate 
with 
V2X 

 Detects the presence of vehicles and 
bicyclists at the stop bar 

 Detects pedestrians and bicyclists in 
the crosswalk or on the curb 

 Turning movement counts  
 Wrong way detection and notification 
 Corridor travel time 
 ATSPM 
 Interactions with controller for advance 

detections 

Pedestrian 
Crosswalk 
Systems 

 Used by 
FDOT  

 Stop bar and advanced vehicle and 
bicycle presence detection require a 
separate, optional license 

 Need two thermal cameras to cover one 
crosswalk 

 System is susceptible to the presence of 
vehicles on crosswalks 

 Overcounts elements in the crosswalk 
 The system overcounts in higher 

magnitude in the early morning and 
daytime, compared to evening  

 Shading affects count accuracy 

TrafiSense AI– FLIR 
Thermal camera solution 
 

 
Source: FLIR (2022) 

Unknown Unknown Unknown 
32° 
30–90 m 

 Traffic 
pole  

 AC 
power 

 Cellular 
modem  

 Direct 
plug-in 
to the 
camera 

 Can be 
retrofitte
d with 
5G 
cellular 
antennas 
to 
integrate 
with 
V2X 

     
 Permanent  
 Detection by lane  

 Integrated 
with 
TAPCO’s 
Wrong-Way 
Alert and 
Pedestrian 
Crosswalk 
Systems 

 Used by 
FDOT 

 Sufficiently 
accurate 
based on 
field tests by 
Oregon 
DOT 

 Similar to TrafiOne by FLIR 

 Not able to distinguish between 
pedestrians and bicyclists 

 System is susceptible to the presence of 
vehicles on crosswalks 

 Only suitable for vehicle, bicycle, and 
pedestrian presence detection but not 
volume counts 

 Overcounts elements in the crosswalk 
 The system overcounts in higher 

magnitude in the early morning and 
daytime, compared to evening 

 Shading affects count accuracy 
 Video streaming is not available 



Literature Review of PNT and GNSS Threats and Vulnerabilities to HATS

3.2 Threats and Vulnerabilities in Vehicle-To-Everything (V2X) Com-
munication Protocols and Applications

Various prior works have studied the security of Vehicle-To-Everything (V2X) technology.
At the communication protocol layer, various prior works performed vulnerability analysis,
but mostly on the protocol designs before the standardization of IEEE 1609 V2X protocol
family [306, 307, 308, 309, 310]. On the latest V2X protocol family, Hu et al. performed the
first formal security analysis and were able to uncover 4 new denial-of-service vulnerabili-
ties in the Peer-to-Peer Certificate Distribution (P2PCD) design, which were all confirmed
by the V2X protocol standardization group and the proposed solutions are planned to be
integrated into future versions of IEEE 1609 [311].

At the application layer, various prior works have identified data spoofing as a realistic
attack vector in the V2X environment (e.g., when malicious vehicle owners are malicious
and deliberately send spoofed data). Specifically, various prior works have studied the
impact of data spoofing attacks on V2V (Vehicle-to-Vehicle) based automated vehicle pla-
toon systems and found that such spoofing attacks can cause collision or significant traffic
flow instability [312, 313, 314]. Hu et al. are the first to design a formal security analysis
method on such algorithms and were able to systematically discover 14 new vulnerabilities
in popular platoon algorithm designs [311].

Besides V2V applications, prior works have also studied the impact of data spoofing at-
tacks on V2I (Vehicle-to-Infrastructure) based intelligent transportation systems such as
V2I-based intelligent traffic lights. Specifically, Chen et al. are the first to study such V2I-
based systems, which are able to find that even data spoofing from one single attack vehi-
cle can cause massive traffic jams due to a few newly-discovered security vulnerabilities
at the traffic control algorithm level [315, 316]. Several follow-up works have performed
more comprehensive security analysis [317] and designed potential defense solutions on
both the infrastructure side [318] and vehicle side [319].

3.3 Threats andVulnerabilities in PNTSystems, Sensors andSources
for HAT

We conducted an extensive literature review focusing on sensors and their sources appli-
cable to Highly Automated Transportation Systems (HATSs). Our survey delves into the
identification of subsystems and the specific sensors utilized within these subsystems.
Furthermore, we extended our investigation to diverse scenarios, including urban and ru-
ral environments. The objective was to analyze the compatibility of each subsystem in
both driving scenarios, highlighting the necessary sensors for optimal functionality.

The findings are summarized in Tables 6 and 7. The use of olive green shading in the cells
signifies subsystems and sensors that are versatile and applicable in both urban and rural
driving scenarios. In contrast, lime-colored cells indicate subsystems specifically suited
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Figure 11: Framework for onboard subsystems and sensors for far-space and near space navigation

for developed urban areas, leveraging the availability of particular sources. Conversely,
white cells denote instances where a given subsystem does not incorporate the asso-
ciated sensor. The presence of a white cell in the tables also indicates a literature gap
concerning the specific subsystem in relation to the sensors utilized in both urban and rural
environments. This suggests that there is insufficient documented research or informa-
tion addressing the vulnerabilities, threats, or impacts associated with the corresponding
subsystem’s sensors in diverse urban and rural settings.

These tables offer a comprehensive overview of the literature survey, presenting a detailed
insight into the adaptability of subsystems and sensors across different driving scenarios
within Highly Automated Transportation Systems.

We conducted an in-depth analysis of threats and vulnerabilities within both cellular and
DSRC communication networks, considering all potential risks associated with WiFi and
cellular communication networks. The outcomes of threats and vulnerabilities are com-
prehensively presented in Tables 8, 9, and 10. To specifically identify the implications for
Positioning, Navigation, and Timing (PNT) subsystems, the system is categorized into two
segments: near-space navigation and far-space navigation.

In near-space navigation, the PNT solution involves absolute positioning, necessitating
decisions to be made within milliseconds. Conversely, far space navigation focuses on
long-distance or strategic route planning, with decisions made over minutes. Figure 11
visually depicts the subsystems and their respective PNT solutions in both far-space and
near-space navigation contexts. The tables and figures collectively provide a detailed
examination of the threats and vulnerabilities associated with onboard navigation systems
in various spatial and temporal contexts.

We conducted a comprehensive literature survey focusing on cooperative navigation strate-
gies for connected autonomous vehicles operating within smart intersections. The existing
body of literature revealed a limited number of papers specifically addressing cooperative
navigation for connected autonomous vehicles. Notably, most of these papers primar-
ily discussed Vehicle-to-Vehicle (V2V) cooperation, often restricting vehicle operations

70



Literature Review of PNT and GNSS Threats and Vulnerabilities to HATS

to straight roads in platoon formations. Some papers touched upon scenarios involving
unsignalized intersections.

Recognizing the existing research gaps, we identified the need to develop a coopera-
tive navigation strategy that leverages all available parameters from different sources,
including Roadside Units (RSU), On-Board Units (OBU), Smart Traffic Lights (STL), and
Autonomous Intersection Management (AIM) systems. Subsequently, we designed a co-
operative navigation framework and proceeded to validate and verify several threat sce-
narios outlined in Tables 8, 9, and 10. This framework aims to address the limitations
observed in the current literature and enhance the capabilities of cooperative navigation
for connected autonomous vehicles at smart intersections.

Following the identification of sensors used in Highly Automated Transportation Systems
(HATSs), we conducted an in-depth analysis of the attack surfaces associated with these
sensors and sources for Positioning, Navigation, and Timing (PNT) solutions. Our inves-
tigation involved an extensive literature survey to identify potential threats and vulnerabili-
ties of PNT sensors and sources. The results are systematically summarized in Tables 8,
9, and 10.

In Table 8, we present vulnerabilities linked to PNT sensors and sources that could be
exploited by malicious actors to generate threats. Tables 9 and 10 outline the potential
threats posed by attackers, leading to hazardous situations compromising the safety of
road users. Within these tables, red cells indicate the types of threats or attacks that
impact specific PNT sensors and sources, while white cells signify scenarios where a
particular type of attack is not applicable to the corresponding sensors.

These tables provide a comprehensive summary of our literature survey, offering insights
into the vulnerabilities, threats, and potential impacts on PNT sensors and sources within
the context of Highly Automated Transportation Systems.

3.3.1 Waypoint Positioning System

The referenced literature provides an extensive overview of waypoint navigation systems
employing diverse sensor technologies. Raja and Guven [320] focus on obstacle avoid-
ance and waypoint navigation using global position and ultrasonic sensors. Sood et al.
[321] explore multiple waypoint navigation in unknown indoor environments. Nofandi et
al. [322] present the design of a floating robot for irrigation with GPS-based waypoint
navigation. Lin et al. contribute to the field with research on local path planning and way-
point tracking using artificial potential fields for collision avoidance[323] [324]. Bao et al.
[325] investigated the outdoor navigation of mobile robots through GPS waypoints and
local pedestrian lanes. Stanczak et al. [326] enhance unmanned aerial vehicle commu-
nication in LTE-Advanced networks. Hussain et al. [327] propose an integrated approach
of 4G LTE and DSRC for the Internet of vehicles. Miyake et al. [328] apply dynamic-
task-based hazard identification to remote operation of experimental ships. Purucker et
al. [329] specify system requirements for UAV-to-server communication. Storbacka [330]
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contributes to the development of autonomous navigation systems for maritime applica-
tions. Zhang et al. [331] propose a domain adversarial graph convolutional network for
indoor localization. Naheem et al. [332] examine the tracking feasibility of UWB posi-
tioning systems for lighter-than-air indoor robot navigation. Mendes [333] explores drone-
supported AI-based generation of 3D maps for indoor radio environments. Khassanov et
al. [334] investigate finer-level sequential WiFi-based indoor localization. Dhanjal et al.
[335] present Deeplocnet, a system for deep observation classification and ranging bias
regression in radio positioning systems. Ma et al. [336] propose a WiFi RSSI ranking
fingerprint positioning system for indoor activities of daily living recognition. Zhao et al.
[337] develop a co-simulation platform for modeling and evaluating connected and auto-
mated vehicles and human behavior in mixed traffic. Naik et al. [338] focus on semantic
mapping extension for OpenStreetMap applied to indoor robot navigation. Weerakoon et
al. [339] introduce Terp, a reliable planning approach in uneven outdoor environments us-
ing deep reinforcement learning. Benders [340] explore reconfigurable path planning for
fixed-wing unmanned aircraft using free-space roadmaps. The contributions in avionics
navigation systems [341] and GIS-supported location-based services [342] further enrich
the understanding of waypoint positioning systems.

3.3.2 Attitude determination system

The cited references delve into various methods and algorithms for attitude determina-
tion, primarily utilizing Global Positioning System (GPS) signals and sensors. Crassidis
and Markley [343] introduce a new algorithm for attitude determination using GPS signals.
Wang et al. [344] propose a constrained lambda method for GPS attitude determination.
Liu et al. [345] present the Constrained Wrapped Least Squares method as a tool for high-
accuracy GNSS attitude determination. Gan et al. [346] focus on real-time GNSS attitude
determination with a direct approach, emphasizing efficiency and robustness. He et al.
[347] survey the developments in attitude determination and control systems for microsats.
Bar-Itzhack et al. [348] contribute algorithms for attitude determination using GPS. Wertz
[349] and Markley [350] provide fundamental insights into spacecraft attitude determina-
tion and control. Gebre-Egziabher et al. [351] discuss the design of multi-sensor attitude
determination systems. Lu [352] works on the development of a GPS multi-antenna sys-
tem for attitude determination. Murrell [353] explores precision attitude determination for
multimission spacecraft. Zhu et al. [354] propose a linear fusion algorithm for attitude
determination using low-cost MEMS-based sensors. Collectively, these references of-
fer a comprehensive exploration of sensor-based approaches to attitude determination in
various contexts.

3.3.3 Path-Planning System

The surveyed literature, spanning references, collectively delves into various aspects of
path planning systems, employing diverse sensors and methodologies. Zhang et al. [355]
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propose an efficient algorithm for vehicle path planning based on taxi GPS big data.
Maaref and Kassas [356] focus on optimal GPS integrity-constrained path planning for
ground vehicles. Lee et al. [357] introduce an integrity-based strategy for urban au-
tonomous vehicular navigation using GPS and cellular signals. Akhshirsh et al. [358]
present a cost-effective GPS-aided autonomous guided vehicle. Corcoran [359] explores
topological path planning in GPS trajectory data, while Wang et al. [360][360] investi-
gate the impacts of GPS spoofing on unmanned surface ship path planning. Al Arabi
et al. [361] discuss autonomous rover navigation using GPS-based path planning, and
Korkmaz and Poyraz [362] propose path planning for rescue vehicles using segmented
satellite disaster images and GPS road maps. Chung et al. [363] develop a path-planning
algorithm for robotic lawnmowers using RTK-GPS localization. Li et al. [364] present an
optimal path planning method for an autonomous underwater vehicle. Tan et al. [365] ex-
plore cooperative path planning for range-only localization using a single moving beacon.
Imamura et al. [366] address outdoor waypoint navigation for an intelligent wheelchair
using differential GPS and INS. Lekkas [367] explores guidance and path-planning sys-
tems for autonomous vehicles, while Crane III et al. [368] evaluate INS and GPS for
autonomous navigation. Golenbiewski and Tewolde [369] propose a Wi-Fi-based indoor
positioning and navigation system (IPS/INS). Ragothaman [370] investigates path plan-
ning for autonomous ground vehicles using GNSS and cellular LTE signal reliability maps
and GIS 3-D maps. Ragothaman et al. [371] develop autonomous ground vehicle path
planning in urban environments using GNSS and cellular signals reliability maps. Liu et
al. [372] propose path planning for aerial sensor networks with connectivity constraints,
and Ragothaman et al. [373] focus on autonomous ground vehicle path planning in ur-
ban environments using GNSS and cellular signals reliability maps: models and algo-
rithms. Liu et al. [374] investigate remote driving over the LTE network. Challita et al.
[375] utilize deep reinforcement learning for interference-aware path planning of cellular-
connected UAVs, and De Bast et al. [376] discuss cellular coverage-aware path planning
for UAVs. Mezghani and Mitton [377] address energy- and time-efficient dynamic drone
path planning for post-disaster network servicing. Zhang and Zhang [378] propose a radio
map-based 3D path planning for cellular-connected UAVs. Shin and Kim [379] present a
PF-DOP hybrid path planning for the safe and efficient navigation of unmanned vehicle
systems. Binol et al. [380] focus on time-optimal multi-UAV path planning for gathering
data from roadside units. de Souza et al.[381] introduce real-time path planning to pre-
vent traffic jams through an intelligent transportation system, and Shi et al.[382] address
QoS-aware UAV coverage path planning in 5G mmWave networks. This collective body
of work significantly contributes to the field by leveraging various sensors and methodolo-
gies, enhancing the capabilities of path-planning systems across diverse environments.

3.3.4 Collision Avoidance System

The literature review explores a comprehensive array of collision avoidance systems,
drawing upon various sensors and methodologies. Almeida et al. [383] contribute in-
sights into radar-based collision detection developments on the Unmanned Surface Vehi-
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cle (USV) Roaz II. Biswas et al. [384] emphasize reliability in vehicular collision avoidance
through joint RFID and radar-based vehicle detection. Lazarowska [385] provides a review
of collision avoidance and path planning methods for ships utilizing radar remote sensing.
Sivakumar and Mangalam [386] delve into a radar-based vehicle collision avoidance sys-
tem in four-wheeler automobile segments. Wang et al. propose an intelligent CAN-based
automotive collision avoidance warning system.

Advancements in Vehicle-to-Vehicle (V2V) communication systems are explored by Wang
et al. [387], presenting a novel V2V cooperative collision warning system utilizing UWB/DR
for intelligent vehicles. Gazit [388] focuses on aircraft surveillance and collision avoidance
using GPS. Toledo-Moreo and Zamora-Izquierdo [389] discuss collision avoidance support
in roads with lateral and longitudinal maneuver prediction, fusing GPS/IMU and digital
maps. Nieto and Dagdelen [390] develop a vehicle collision avoidance system based on
GPS and wireless networks for open-pit mines. Rudel and Baldwin [391] investigate GPS
relative accuracy for collision avoidance.

Several studies introduce innovative collision avoidance systems for diverse contexts.
Ahamed et al. propose a train collision avoidance system using GPS and GSM modules.
Young et al.[392] present a vehicle collision avoidance system using embedded hybrid
intelligent prediction based on vision/GPS sensing. Sato et al. [393] contribute to ve-
hicular collision avoidance support systems using GPS+INS hybrid vehicular positioning
methods. Kose et al. [394] describe a collision avoidance expert system for an integrated
navigation system. Elsayed et al. [395] present a fuzzy logic-based collision avoidance
system for autonomous navigation vehicles.

The evolution of technology is evident in the integration of LTE-V2X communication sys-
tems for collision avoidance. Igual et al. [396] demonstrate and evaluate precise position-
ing for connected and automated mobility services. Alam et al. [397] focus on dynamic
path loss exponent and distance estimation in a vehicular network using Doppler effect and
received signal strength. Paier et al. [398] provide an overview of vehicle-to-vehicle radio
channel measurements for collision avoidance applications. Viquerat et al. [399] discuss
reactive collision avoidance for unmanned aerial vehicles using Doppler radar. Huang et
al. [400] explore the use of the Doppler effect in an early warning system for a vehicle
collision at a crossroads. Kihei et al. [401] leverage automotive Doppler sensing and
machine learning in vehicle-to-vehicle networks for road safety. He et al. [402] enhance
collision avoidance for distributed LTE vehicle-to-vehicle broadcast communications, while
Li et al. [403] focus on a collision avoidance strategy supported by LTE-V-based vehicle
automation and communication systems for car following.

LTE-V2X connectivity impact on global occupancy maps in a cooperative collision avoid-
ance (CoCA) system is examined by Mouawad et al. [404], and the performance evalua-
tion of safe avoidance time and safety message dissemination is investigated by Halim et
al. [405].

Recent developments incorporate monocular vision, deep learning, and sonar fusion for
enhanced collision avoidance. Rill and Faragó [406][409] utilize deep learning-based
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monocular vision for collision avoidance, and Hatch et al. [407] introduce obstacle avoid-
ance using a monocular camera. Mahmeen et al. [408] propose collision avoidance route
planning for autonomous medical devices using multiple depth cameras. Sawalmeh and
Othman [409] provides an overview of collision avoidance approaches and network archi-
tecture for Unmanned Aerial Vehicles (UAVs). Tikar and Patil [410] propose a novel fast-
responding driver assistance technique with efficient lane detection and collision avoid-
ance using dynamic feature extraction in any environment. Jansen et al. [411] present
real-time sonar fusion for layered navigation control. Wouter et al. [412] explore adap-
tive acoustic flow-based navigation with 3D sonar sensor fusion. The field of underwater
autonomous vehicles is addressed by Kot [413], reviewing collision avoidance and path
planning algorithms. Cao et al. [414] focus on obstacle detection and avoidance of au-
tonomous underwater vehicles based on forward-looking sonar.

Lidar technology emerges as a pivotal sensor in collision avoidance systems. Fang et al.
[415] propose a Lidar-driven spiking neural network for collision avoidance in autonomous
driving. Kim et al. [416] investigate a numerical and experimental study on the obstacle
collision avoidance system using a 2D Lidar sensor for an autonomous surface vehicle.
Beul and Behnke [417] contribute to trajectory generation with fast Lidar-based 3D collision
avoidance for agile Micro Aerial Vehicles (MAVs).

In conclusion, the surveyed literature reflects the dynamic landscape of collision avoid-
ance systems, incorporating a diverse range of sensors and methodologies to enhance
safety across various domains, including maritime, automotive, aviation, and underwater
environments.

3.3.5 Lane Keeping and Departure System

The references in the literature provide an overview of various sensors and methodologies
employed in the development and enhancement of lane-keeping and Departure Warning
Systems in autonomous vehicles.

Enayati, Asef, and Jonnalagadda [418] introduce a novel triple radar arrangement for a
Level 2 ADAS detection system in autonomous vehicles. Horri et al. [419] focus on mode-
switching control using lane-keeping assist and waypoint tracking for autonomous driving
in a city environment. Yang, Choi, and Chung [420] contribute to driving environment
assessment and decision-making for cooperative lane change systems in autonomous
vehicles.

Magosi et al. [421] conduct a survey on modeling automotive radar sensors for virtual
testing and validation of automated driving. Kim et al. [422] propose lane change inten-
tion classification of surrounding vehicles utilizing open-set recognition. Feng et al. [423]
verify a lane detection method with automotive radar based on a new type of road mark-
ing. Chetan et al. [424] provides an overview of recent progress in lane detection for
autonomous driving.
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Philipp, Schuldt, and Howar [425] focus on the functional decomposition of automated
driving systems for the classification and evaluation of perceptual threats. Nagy and Costa
[426] present the development of a lane-keeping steering control using a camera vanishing
point strategy. Romano et al. [427] investigate the impact of lane-keeping assist system
camera misalignment on driver behavior. Cantas and Guvenc [428] explore a camera-
based automated lane-keeping application complemented by GPS localization-based path
following. Basjaruddin, Rakhman, and Adinugraha [429] simulate the hardware of a lane-
keeping assist system based on sensor fusion.

Lin et al. [430] propose an automatic lane marking detection method with low-density road-
side LiDAR data. Pagire and Mate [431] discuss an autonomous vehicle using computer
vision and LiDAR. Li et al. [432] contribute to road geometry perception without accurate
positioning and lane information.

These studies collectively illustrate the diverse array of sensors and methodologies em-
ployed in the development of Lane Keeping and Departure Warning Systems, highlighting
the multidisciplinary nature of research in this field.

3.3.6 Adaptive Front Lighting System

The references in the literature collectively provide insights into sensors and methodolo-
gies employed in the development of Adaptive Front Lighting Systems (AFS) and associ-
ated safety considerations in the context of driving.

Shadeed and Wallaschek [433] present the concept of an intelligent adaptive vehicle front-
lighting assistance system. Kurtuluş [434] discusses exterior lighting systems for auto-
mated vehicles to communicate with pedestrians and other vehicles. Radoš et al. [435]
focus on the modeling and implementation of an adaptive vehicle light management sys-
tem. Dubal and Nanaware [436] delve into the design of adaptive headlights for automo-
biles, and Magar [437] explores adaptive front light systems for vehicle road safety.

Li and Zhao [438] contribute a low-cost and fast vehicle detection algorithm with a monoc-
ular camera for adaptive driving beam systems. Toney et al. [439] design and implement
smart headlamps with overtaking assistance for automobiles using MATLAB. Rongier et
al. [440] employ infrared thermography for the validation of thermal simulation of high-
luminance LEDs used in automotive front lighting.

These studies collectively showcase the use of various sensors and methodologies, in-
cluding intelligent algorithms, modeling, and infrared thermography, to enhance the capa-
bilities of Adaptive Front Lighting Systems. Additionally, the focus on road safety under-
scores the importance of these technologies in improving driving conditions and preventing
accidents.

76



Literature Review of PNT and GNSS Threats and Vulnerabilities to HATS

3.3.7 Traffic Sign Recognition System

The references collectively address the advancements in Traffic Sign Recognition Sys-
tems (TSRS), emphasizing the integration of various sensors and methodologies to en-
hance driving safety. Zhao et al. [441] focus on obstacle avoidance for multi-sensor intel-
ligent robots based on road sign detection. Yazdan and Varshosaz [442] contribute to the
improvement of traffic sign recognition results in urban areas by addressing challenges
related to scale and rotation. Le et al. [443] delve into the training of a Convolutional
Neural Network (CNN) for transportation sign detection using synthetic datasets, explor-
ing innovative approaches to optimize recognition capabilities. Hasan et al. [444] present
a Traffic Sign Recognition System employing Support Vector Machines (SVM) and CNN,
emphasizing the crucial role of such systems in promoting driving safety through efficient
sign recognition.

3.3.8 Night Vision System

Presented references address the development of intelligent systems for enhanced safety
in driving conditions, particularly focusing on Night Vision Systems. Dhelia et al. [445]
present ”Protall,” an Intelligent, Multi-sensor, Comprehensive Obstacle Avoidance Sys-
tem designed for both automobiles and Unmanned Aerial Vehicles (UAVs). This system
incorporates various sensors to provide a comprehensive solution for obstacle avoidance.
On the other hand, Kamble and Patil [446] introduce an Intelligent Night Vision System for
automobiles based on computer vision, emphasizing the role of advanced imaging tech-
nologies in enhancing visibility during low-light conditions. Additionally, Priyadharshini et
al. [447] contribute to the field by proposing a Surveillance-based approach for spotting
and categorizing automobiles, highlighting the relevance of such systems for monitoring
and ensuring safety in driving scenarios, particularly at night.

3.3.9 Emergency Braking System

The referenced papers collectively delve into the intricate domain of Emergency Braking
Systems (EBS) within the realm of autonomous vehicles, offering comprehensive insights
into various facets of these systems. EBS assumes a pivotal role in ensuring vehicular
safety, employing a sophisticated blend of multi-sensor fusion, advanced algorithms, and
communication technologies. The integration of diverse sensors such as radar, GPS, lidar,
and cameras is extensively explored in references [454], [455],[456], and [457], highlight-
ing the pursuit of optimizing emergency braking algorithms through the synergy of multiple
sensing modalities.

Understanding the influence of advanced emergency braking systems in critical scenar-
ios is a focal point, as evidenced by the investigation presented in reference [458]. This
research emphasizes the significance of evaluating how these systems perform in high-
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Table 6: Subsystem Verses Sensors and Sources in Urban-Rural Driving Scenarios
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stakes situations, shedding light on their behavior to minimize the severity of potential
collisions. The importance of simulation, testing, and real-world validation is underscored
by references [459], [460], [461], [462], and [463], collectively emphasizing the need for
a rigorous approach to assessing the effectiveness and reliability of emergency braking
systems across diverse scenarios.

Furthermore, references [464] and [465] explore the integration of the Internet of Things
(IoT) and data analysis to enhance emergency braking systems. Real-time data analy-
sis is positioned as a key component, facilitating continuous monitoring and enhancing the
system’s responsiveness to potential dangers. Concurrently, research in references [466],
[467], and [468] focuses on object detection, tracking, and front-view camera-based sys-
tems to fortify the capabilities of emergency braking systems. The accurate identification
and tracking of objects in the vehicle’s path are highlighted as crucial elements for enabling
timely and reliable emergency braking responses, thereby elevating overall safety.

Additionally, the development of low-cost autonomous emergency braking systems for
electric cars is explored in references [469], [463], and [470]. The pursuit of cost-effective
solutions holds the promise of democratizing access to advanced safety features, poten-
tially amplifying road safety on a broader scale. In essence, the amalgamation of these re-
search endeavors contributes to the continuous evolution of Emergency Braking Systems,
aligning with the overarching goal of advancing safety measures within the autonomous
vehicle landscape.

3.3.10 Pedestrian Detection System

The references provide valuable insights into the realm of Pedestrian Detection Systems,
exploring a diverse array of sensors and methodologies to enhance safety in driving sce-
narios.

Reference [471] examines the interplay between automated vehicles and pedestrian safety,
delving into the potential and limitations of pedestrian detection. The paper emphasizes
the importance of understanding the promises and challenges associated with deploying
such systems.

In reference [472], the focus shifts to millimeter-wave radar-based pedestrian trajectory
tracking for autonomous urban driving. The utilization of radar technology showcases the
potential for precise pedestrian tracking, a crucial aspect for ensuring the safety of both
pedestrians and autonomous vehicles.

A novel approach to non-line-of-sight pedestrian detection is presented in reference [473],
where secondary radar employing frequency doubling is explored. This innovative tech-
nique aims to enhance the detection capabilities, particularly in scenarios where direct
line-of-sight visibility is compromised.

Reference [474] introduces a model-based pedestrian tracking system utilizing automotive
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radar. The paper outlines a novel approach to pedestrian tracking, showcasing the inte-
gration of radar technology for improved accuracy in detecting and monitoring pedestrian
movements.

The concept of generalizable multi-camera 3D pedestrian detection is explored in refer-
ence [475]. Leveraging multiple cameras, this approach aims to provide a comprehensive
and adaptable system for detecting pedestrians in varied environments.

The integration of thermal cameras for pedestrian detection is discussed in reference
[476]. Thermal imaging adds a new dimension to pedestrian detection systems, enabling
the identification of pedestrians based on their thermal signatures, particularly useful in
low-light or challenging visibility conditions.

Event-based pedestrian detection using dynamic vision sensors is presented in reference
[477]. This methodology leverages dynamic vision sensors to capture relevant events,
offering a real-time and efficient approach to pedestrian detection.

Nighttime pedestrian detection and distance estimation are addressed in reference [478],
introducing a Multi-task Faster R-CNN. This method is designed to improve detection per-
formance during low-light conditions, contributing to enhanced safety in nighttime driving
scenarios.

Lidar-based pedestrian detection is the focus of reference [479], providing an overview
of the application of lidar technology in advanced driving assistance systems. The paper
discusses the benefits and challenges associated with lidar-based pedestrian detection.

Finally, reference [480] explores the detection and tracking of pedestrians using Doppler
lidar. This methodology capitalizes on Doppler lidar technology to enhance the precision
of pedestrian detection and tracking, particularly in dynamic environments.

In summary, these references collectively contribute to the advancement of Pedestrian
Detection Systems, showcasing a diverse range of sensor technologies and methodolo-
gies aimed at enhancing safety in driving scenarios by effectively identifying and tracking
pedestrians.

3.3.11 Blind Spot Detection System

The referenced papers collectively provide insights into Blind Spot Detection systems,
showcasing various sensors and methodologies employed to enhance safety in driving
scenarios.

Reference [481] focuses on a multi-sensor fusion algorithm within a cooperative Vehicle-
Infrastructure System for Blind Spot Warning. By integrating data from multiple sensors,
the algorithm aims to enhance the accuracy of blind spot warnings, contributing to im-
proved driving safety.
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In reference, [482], a micro-Doppler radar is utilized for Pedestrian Detection in blind ar-
eas, coupled with motion classification based on rush-out risk. This approach leverages
radar technology to detect pedestrians in areas typically considered blind spots, enhanc-
ing overall awareness for drivers.

The technical challenges and a proposed solution related to blind spots in autonomous
cars are discussed in reference [483]. The paper addresses the complexities associated
with blind spots in autonomous vehicles, emphasizing the need for effective solutions to
ensure safety during autonomous driving.

Reference [484] investigates driver glance behavior towards cyclists at intersections, specif-
ically in the context of being caught in the blind spot of a truck. The study employs a choice
model to analyze driver behavior, providing valuable insights into potential blind spot is-
sues and associated safety concerns.

In reference [485], a path planning method is proposed for wheeled mobile robots, con-
sidering blind spots. The approach utilizes the Robot Operating System (ROS) navigation
stack and a dynamic window approach to enhance path planning, emphasizing the impor-
tance of accounting for blind spots in the navigation process.

In [486], the authors present a Blind-Spot Monitoring System using LiDAR. LiDAR, a re-
mote sensing technology, is employed to detect and monitor blind spots around a vehicle.
The system aims to enhance driver awareness by providing real-time information about
objects in the vehicle’s blind spots, ultimately contributing to safer driving. Reference
[487] focuses on an experimental study evaluating the capabilities of long-range LiDAR
in sensing safety distances for vehicle applications. The study explores the potential of
LiDAR to accurately perceive safety distances, crucial for effective blind spot detection.
By experimenting with long-range LiDAR, the research aims to contribute to the develop-
ment of advanced safety systems, particularly in the context of blind spot monitoring. Both
[486] and [487] underscore the significance of LiDAR technology in addressing blind spots,
leveraging its capabilities for precise and reliable detection. The use of LiDAR in blind spot
detection systems enhances safety by providing drivers with comprehensive information
about their vehicle’s surroundings, minimizing the risk of collisions, and improving overall
driving awareness.

Overall, the references highlight the significance of addressing blind spots in driving sce-
narios and propose diverse sensor technologies and algorithms to enhance detection and
awareness, ultimately contributing to increased safety on the road.

3.3.12 Parking Assist System

The literature collectively provides a comprehensive overview of Parking Assist systems,
detailing the diverse sensors and methodologies employed in this context, along with con-
siderations for associated safety in driving scenarios.

81



Literature Review of PNT and GNSS Threats and Vulnerabilities to HATS

[488] focuses on the system design of automatic parking assist based on ISO26262 stan-
dards. ISO26262 compliance ensures that the automated parking system adheres to
safety standards, highlighting the commitment to designing and implementing reliable and
secure parking assistance features.

[489] delves into the subjective evaluation of intelligent parking assist systems, empha-
sizing the importance of considering typical parking scenarios. This research contributes
to enhancing the user experience and safety aspects of parking assistance technology.

[490] presents an algorithm for human classification in automotive radar systems. This
classification algorithm is pivotal for ensuring that the parking assist system accurately
detects and responds to human presence in parking spaces, preventing potential acci-
dents.

[491] introduces a SqueezeNet-based approach for range, angle, and Doppler estimation
in automotive MIMO radar systems. This method enhances the precision of radar sys-
tems, crucial for the accurate functioning of parking assist features [492] explores auto-
mated parking tests using Inverse Synthetic Aperture Radar (ISAR) images from automo-
tive radar. The utilization of ISAR images contributes to the evaluation and improvement
of radar-based parking assistance systems.

[493] introduces imaging radar for automated driving functions, emphasizing the role of
radar technology in providing visual information crucial for safe and efficient parking as-
sistance. [494] proposes an intelligent parking lot assistance system based on machine
vision and the A* algorithm. This fusion of machine vision and algorithmic intelligence
contributes to precise and effective parking assistance.

[495] offers a survey of smart parking application deployment, shedding light on the various
technologies and approaches applied in the deployment of smart parking systems. [496]
and [497] explore the development of parking assistance systems and the establishment
of safety metrics for automatic vehicle parking using machine learning, respectively.

[498] discusses a smart parking system mobile application using ultrasonic detectors,
showcasing the integration of mobile applications with sensor technologies for convenient
and safe parking. [499] presents a solution for autonomous vehicle parking, contributing
to the advancement of self-parking technologies.

[500] and [501] [524] focus on Lidar technology for parking assistance and self-driving
cars, respectively, underlining the significance of Lidar in enhancing perception and safety
in parking scenarios.

[502]concludes the collection by discussing car parking assistance based on time-of-flight
cameras, adding to the diverse sensor technologies employed in parking assist systems
and their contributions to safety in driving scenarios.
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3.3.13 Parking Space Detection System

The references provide comprehensive insights into Parking Space Detection systems,
highlighting various sensors and methodologies employed to enhance parking efficiency
and contribute to driving safety.

In reference [503], Convolutional Neural Networks (CNNs) are explored for parking space
detection in downfire urban radar. The use of CNNs demonstrates their effectiveness in
radar-based systems for accurately identifying vacant parking spaces. Reference [504]
investigates the fusion of radar and camera technologies for vacant parking space detec-
tion. The integration of these two sensor modalities aims to improve the reliability and
precision of parking space detection systems.

A research review on parking space detection methods is presented in reference [505],
offering an overview of diverse approaches and methodologies employed in this domain.
The paper provides valuable insights into state-of-the-art techniques in parking space de-
tection.

In reference [506], a millimeter-wave dual-lens antenna is proposed for an IoT-based smart
parking radar system. This innovative antenna design contributes to the development of
radar systems with improved capabilities for detecting parking spaces.

The utilization of automotive millimeter-wave Synthetic Aperture Radar (SAR) for an aux-
iliary parking method is explored in reference [507]. This approach leverages SAR to
enhance parking assistance systems, showcasing the potential of radar technologies in
parking applications.

A connected car-based parking location service system is introduced in reference [508].
The system utilizes connected vehicles to provide real-time information about available
parking spaces, contributing to efficient parking management.

LTE signal-based vehicle localization in indoor parking lots using mobile phones is dis-
cussed in reference [509]. The paper presents a novel approach to parking space detec-
tion by leveraging LTE signals and mobile phone data.

Reference [510] introduces a connected vehicle-based parking space guidance system,
leveraging advancements in connected vehicle technologies to offer guidance and infor-
mation about available parking spaces.

Underground parking lot navigation using Long-Term Evolution (LTE) signals is explored in
reference [511]. The use of LTE signals enhances navigation systems, providing accurate
information about parking spaces in indoor environments.

An edge-based smart parking solution using camera networks and deep learning is pre-
sented in reference [512]. The combination of cameras and deep learning algorithms
contributes to real-time parking space detection and management.

Drone-based vacant parking space detection is discussed in reference [513]. Drones are
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employed as a novel tool for monitoring and identifying available parking spaces, offering
a dynamic and flexible approach to parking space detection.

In reference [514], Convolutional Neural Networks (CNNs) are applied to on-street parking
space detection in urban networks. The use of CNNs showcases their effectiveness in
visual-based parking space detection systems.

Real-time IP camera parking occupancy detection using deep learning is explored in ref-
erence [515]. Deep learning algorithms applied to IP camera feeds enable accurate and
real-time detection of parking space occupancy.

An image-based approach for parking spot detection with occlusion handling is presented
in reference [516]. The proposed approach addresses challenges related to occluded
parking spaces, contributing to more robust parking space detection.

On-street parking spot detection for smart cities is discussed in reference [517], focusing
on the development of systems that enhance urban parking management and contribute
to the efficiency of smart cities.

Mapping and semantic modeling of underground parking lots using a backpack lidar sys-
tem is explored in reference [518]. Lidar technology is employed for 3D mapping of parking
spaces, contributing to advanced parking infrastructure.

Parking space detection based on camera and lidar sensor fusion is investigated in refer-
ence [519]. The fusion of camera and lidar data enhances the accuracy and reliability of
parking space detection systems.

In reference [520], a parking line-based Simultaneous Localization and Mapping (SLAM)
approach is proposed using Advanced Driver Assistance Systems (ADAS) sensors. This
approach leverages sensor fusion for rapid and accurate loop closing and parking space
detection.

A smart parking system using WiFi and wireless sensor networks is introduced in refer-
ence [521] [523]. The integration of WiFi and wireless sensor networks contributes to the
development of smart parking solutions with enhanced communication capabilities.

In reference [522], an IParking system is presented as a real-time parking space monitor-
ing and guiding system. The system utilizes advanced technologies for real-time monitor-
ing and guidance in parking facilities.

A real-time parking space monitoring and guiding system, named iParking, is presented in
reference [523]. The system utilizes advanced technologies for real-time monitoring and
guidance in parking facilities, contributing to efficient parking management.

In conclusion, the references collectively illustrate the diverse range of sensors and method-
ologies employed in Parking Space Detection systems. These technologies aim to im-
prove parking efficiency, reduce congestion, and enhance overall driving safety by provid-
ing real-time information about available parking spaces.
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3.3.14 Valet Parking System

Literature collectively provides insights into the development, methodologies, and safety
considerations associated with Automated Valet Parking (AVP) systems, highlighting the
various sensors and techniques used in these systems.

[524] focuses on time-optimal nonlinear Model Predictive Control (MPC) for radar-based
automated parking. MPC is crucial for optimizing vehicle trajectories during the parking
process, contributing to efficiency and safety. [525] introduces RVDet, a feature-level
fusion of radar and camera for object detection. This fusion enhances object detection
capabilities, ensuring the accurate perception of the vehicle’s surroundings during park-
ing maneuvers. [526] discusses the development, analysis, and real-life benchmarking of
exploring random Trees (RRT)-based path planning algorithms for automated valet park-
ing. Path planning algorithms are vital for determining safe and efficient routes during
parking.

[527] presents a robust multi-camera Simultaneous Localization and Mapping (SLAM) ap-
proach with Manhattan constraint, contributing to precise mapping and localization crucial
for automated valet parking. [528] provides a survey on the evolution from smart parking
to autonomous valet parking, addressing challenges and future directions. This review
outlines the advancements and considerations in the transition to fully automated valet
parking. [529] describes a fully automated valet parking system based on infrastructure
sensing, emphasizing the role of sensing technologies in achieving fully autonomous park-
ing.

[530] introduces an autonomous valet parking system with Asynchronous Advantage Actor-
Critic Proximal Policy Optimization, showcasing advancements in reinforcement learning
for parking automation. [531] explores the design, user experience, and business op-
portunities associated with automated valet parking using IoT. This research provides a
holistic view of the design and user perception of AVP systems. [532] discusses radar-
based multi-floor localization for automated valet parking, addressing the challenges of
multi-level parking environments.

[533] focuses on visual place recognition for automated valet parking, leveraging semantic
and geometric descriptors to enhance the precision of localization. [534] introduces AVP-
LOC, a surround-view localization and relocalization system based on an HD vector map
for automated valet parking. This approach emphasizes the importance of high-definition
mapping for precise and reliable parking.

In summary, these references collectively contribute to the understanding of the sensors
and methodologies employed in automated valet parking systems, with a strong emphasis
on enhancing safety, efficiency, and user experience.
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3.3.15 Auto Summon System

Literature collectively provides insights into the intelligent and connected aspects of ve-
hicles, emphasizing current scenarios, future directions, and challenges, with a specific
focus on cybersecurity, automotive software, and smart summoning of vehicles.

[535] discusses the current situation, future directions, and challenges of intelligent and
connected vehicles. It provides an overview of the state of the technology, potential future
developments, and the challenges that need to be addressed for widespread adoption.
[536] focuses on cybersecurity attacks in vehicular sensors, highlighting the vulnerabilities
associated with connected vehicles. It emphasizes the importance of securing vehicular
sensor systems to ensure the safety and reliability of connected vehicles.

[537] presents a review of automotive software in connected and autonomous electric ve-
hicles. It provides insights into the role of software in enabling connectivity and autonomy
in vehicles, addressing key aspects of the evolving automotive landscape. [538] intro-
duces the concept of smart summoning of ambulances during a vehicle accident. This in-
novative approach leverages connectivity and intelligent systems to enhance emergency
response by autonomously summoning an ambulance to the accident location. [539] dis-
cusses integrated perception and tactical behaviors in an auto-organizing aerial sensor
network. While not explicitly focused on auto summoning, it highlights the integration of
perception and tactical behaviors in connected sensor networks, showcasing the broader
applications of intelligent systems in the automotive domain.

In summary, these references collectively contribute to the understanding of intelligent and
connected vehicles, covering topics such as the current state of technology, cybersecurity
challenges, automotive software, and innovative applications like smart summoning for
emergency response.

3.3.16 Adaptive Cruise Control System

Literature collectively provides insights into Adaptive Cruise Control (ACC) systems, cov-
ering various aspects such as multianticipation, environmental challenges, brake perfor-
mance, fault-tolerant control, congestion mitigation, real-time distributed control, radar
technology, and the development trend of ACC for ecological driving. Here’s a summary:

[540] introduces multi-anticipation for string-stable adaptive cruise control, proposing a
method to increase motorway capacity without relying on vehicle-to-vehicle communica-
tion. [541] discusses the impact of mud-snow layer accumulation on ACC system radar
and proposes a method for measuring the thickness of the accumulated layer. [542] ana-
lyzes the brake performance of radar-based adaptive cruise control during ramp merging
using simulation software.

[543] presents a robust non-fragile fault-tolerant control approach for ensuring the safety
of cooperative adaptive cruise control systems. [544] focuses on congestion-mitigating
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model predictive control design for adaptive cruise control based on Newell’s car-following
model. [545] proposes a real-time distributed cooperative adaptive cruise control model
considering time delays and actuator lag.

[546] discusses MIMO FMCW radar with Doppler-insensitive polyphase codes, contribut-
ing to radar technology for ACC. [547] enhances velocity estimation based on joint Doppler
frequency and range rate measurements. [548] reviews the development trend of adaptive
cruise control for ecological driving, providing insights into the evolution of ACC systems.
[549] explores the automatic recognition of sonar targets using feature selection in micro-
Doppler signature, showcasing advancements in sensing technologies relevant to ACC.

In summary, these references collectively contribute to the understanding of ACC systems,
addressing various challenges and proposing innovative solutions for improving their per-
formance and safety.
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Table 7: Subsystem Verses Sensors and Sources in Urban-Rural Driving Scenarios

HATS-
PNT
Sub-
sys-
tem

Radar GPS INS DopplerLTE CameraSonar Lidar WiFi Legacy
Maps

Emergency
Brak-
ing

[454]
[458]
[455]
[456]
[457]

[459]
[464]
[465]
[550]

[466]
[460]

[551]
[461]

[462]
[467]

[468]
[469]

[463]
[470]

Pedestrian
De-
tec-
tion

[471]
[472]
[473]
[474]

[475]
[476]
[477]

[478]
[479]
[480]

Blind
Spot
De-
tec-
tion

[481]
[482]
[483]

[481]
[484]
[485]

[481]
[486]
[487]

Parking
As-
sist

[488]
[489]
[490]

[491]
[492]
[493]

[489]
[494]
[495]

[496]
[497]
[498]
[499]

[500]
[501]
[502]

Parking
Space
De-
tec-
tion

[503]
[504]
[505]
[506]
[507]

[508]
[466]
[509]
[510]
[511]

[504]
[512]
[513]
[514]
[515]
[516]
[517]

[518]
[512]
[519]
[520]

[521]
[522]
[523]

Valet
Park-
ing

[524]
[525]
[526]
[527]

[528]

[527]
[529]
[530]
[531]

[532]
[533]
[534]

Auto
Sum-
mon

[535]
[536]
[537]

[538] [539]
[537] [536]

Adaptive
Cruise
Con-
trol

[540]
[541]
[542]
[543]
[544]
[545]

[540]
[546]
[547]
[548]

[549]
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Table 8: Vulnerabilities Verses Sensors and Sources in Urban-Rural Driving Scenarios

HATS-
PNT
Subsys-
tem

Radar GPS INS LTE Camera Lidar WiFi Legacy
Maps

Random
walk Er-
ror

[552]
[553]
[554]

Calibration
Error

[552]
[553]
[554]

Bias In-
stability

[552]
[553]
[554]

Line of
Sight

[555]
[556]
[557]

[558]
[559]
[560]

[561]
[562]
[563]

[564]
[565]

Low
power
signals

[566]
[567]

[568]
[569]
[570]

[571]
[572]
[573]

[574]

Multi-
Path
Reflec-
tion

[575]
[576]
[577]
[578]

[579]
[580]
[581]
[582]

[583]
[584]
[585]
[586]

[587]
[588]
[589]
[590]

[591]
[592]
[593]

[594]
[595]
[596]

Atmospheric
Layer
Refrac-
tion

[597]
[598]
[599]
[600]

Weather

[601]
[602]
[603]
[604]

[605]
[606]
[607]
[608]

[609] [610] [611]

Cloud/Fog
[612]
[613]
[614]

[615]
[616]
[617]
[618]

[619]
[620]

[621]
[622]
[623]
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Table 9: Threats Verses Sensors and Sources in Urban Rural Driving Scenarios

HATS-
PNT
Subsys-
tem

Radar GPS INS LTE Camera Lidar WiFi

Eavesdropping
[624]
[625]
[626]

[627]
[628]
[629]

Denial of
Service

[630]
[631]
[632]

[633]
[634]
[635]
[636]

Sybil

[637]
[638]
[639]
[640]
[641]

[642]
[643]

[637]
[644]
[645]

Black
hole

[646]
[647]
[648]

[649]
[650]

Reply At-
tack

[651]
[652]
[653]

[654]
[655]
[656]

[657]
[658]
[659]

[660]
[661]

Timing
[662]
[663]
[664]

[657]
[665]
[666]

Man in
the Mid-
dle

[654]
[667]
[668]

[669] [669] [669]
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Table 10: Threats Verses Sensors and Sources in Urban Rural Driving Scenarios

HATS-
PNT
Subsys-
tem

Radar GPS INS LTE Camera Lidar WiFi

Spoofing [670]
[285]

[671]
[672] [673] [674] [675]

Jamming [88]
[676]

[677]
[678]

[679]
[673]

[129]
[88]

[680]
[677]

Physical
Integrity

[681]
[682]
[683]

[684]
[685]

[131]
[655]

Injection [686]
[687] [688] [689] [690]

[691]
[690]
[131] [692]

Impersonation[652]
[693] [694] [695] [696] [697]

[698] [699]

Illusion [700] [701] [129]
Bogus in-
formation [702] [703]

[536]
[704]
[536]

4 Vulnerabilities, Threats, and Mitigation for PNT Infor-
mation in HAT Systems

Figure 12: Attack types, Attack vectors, and Attack surfaces related to cooperative sensing and communi-
cation [705]
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4.1 Roadside Sensing Technologies

In addition to the idea of cooperative sensing allowing for amplification of vehicles’ situation
awareness, other benefits are realized through the usage of sensor data from multiple
vehicles or fixed roadside sensor stations. The functionalities offered by today’s deployed
technologies have the potential for significantly augmenting the capabilities of tomorrow’s
cooperative systems. Such capabilities offered by today’s roadside technologies include
[294]:

• Near-miss detection or trajectory projection, where for example a vehicle’s dangerously
close proximity to a pedestrian is alerted;

• Touchless crosswalks, where a pedestrian’s intention to use a crosswalk is made known
to a cooperative system;

• Detection of crosswalk violations

• As-needed crosswalk call extension (e.g., for disabled and elderly citizens)

• Call cancellation

• Call abbreviation (e.g., if someone is running or the crosswalk clears quickly)

• Driver notification of pedestrian mid-block crossings

• Crosswalk occupancy detection

• Automated and continuous turn counts

• Preemptive traffic signaling calls or vehicle behaviors to protect vulnerable populations,
such as the elderly, schoolchildren, and those with disabilities

• Real-time data on what is around the corner for connected vehicle drivers

• Immediate incident detection and response

4.2 Sensor Fusion

The combination of different types of roadside sensing technologies through data fusion
offers potential benefits to a cooperative system. One benefit is for the cooperative system
to detect and adapt to the failure of a sensor, whether it be from a total malfunction (e.g.
the sensor loses power), or from an environmental factor that exceeds the capability of a
sensor’s technology (e.g. too much solar glare that overwhelms a video input). Another
benefit is to improve the possibility of achieving resiliency during a spoofing attack on one
of the inputs.
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Research has shown success in combining LiDAR data with a visual camera to address
situations where the images are not clear, or the detections are unreliable. [706] trained
a detector using a combination of optical images and their associated LiDAR 3D point
clouds, captured at ranges of up to 50 meters. Object detection could be performed on
the RGB images and the depths maps followed by the fusion of both results which lead to
better detection performance compared to systems that rely upon only video. [707] also
performed a similar investigation, but incorporated distance to the objects measured by the
LiDAR as a relevant input to improve the classification performance. Accuracy of 97.2%
was found with fusion, whereas video scored 96.2%. [708] followed a similar approach,
but also included an added phase to track multiple pedestrians in a scene. The results
demonstrate that the proposed method achieves significant performance improvement
over a baseline method that solely uses image-based pedestrian detection.

4.3 Crowdsourcing

Several sensor-based technologies can be used for roadside applications to perform func-
tions helpful for a cooperative system, such as those good for monitoring pedestrian vol-
ume and activity. However, it may not be feasible to install these kinds sensors all around
a city [709]. Crowdsourced data can be used to help achieve required spatial and tem-
poral coverage. Examples of crowdsourced data include those from smartphone apps
(including map apps or fitness apps), passive Bluetooth or Wi-Fi sensing, and even social
media. Most mainstream smartphones are now capable of generating huge volumes of
social signals almost in real-time [710].

Several cities have begun to use data sources facilitated by the advancement in smart-
phone technologies to understand the route and time choices of pedestrians and identify
pedestrian-dense origins and destinations. These data sources complement the tradi-
tional survey-based approaches that are used to collect information on walking activities
and concentrations of pedestrians.

Crowdsourced data can be classified into active/explicit and passive/implicit sources de-
pending on the level of input required from pedestrians. [711] defines passive data as
those that need no or little interaction from users such as pedestrians and bicyclists,
whereas active data require conscious input from users [711][712][713]. Passive data
collection methods include Bluetooth/Wi-Fi, mobile phone positioning, global positioning
systems (GPS), multi-app location-based services, and social media posts. Active data
sources include fitness and tracking applications that require users to voluntarily access
and set up the app to collect and store location data before initiating any trips.

Data analysis and provision companies purchase raw data from cellular carriers and ap-
plication operators, clean and preprocess the data, apply algorithms that extract useful
information, and sell the processed product. While crowdsourced data may not yield the
same realtime capabilities or accuracy as those derived from on-vehicle or roadside GPS,
video or LiDAR [714], they can be used for near real time safety purposes such as fore-
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warning of drivers and automated systems of hazardous or anomalous conditions that can
influence route choice analysis and crash exposure control. Beyond that, crowdsourced
data can positively contribute to planning applications as travel demand estimation. Even
so, crowdsourcing techniques continue to face numerous challenges regarding infrastruc-
ture, energy consumption, data quality, reliability, bias, accuracy, and privacy [713], [714].

4.4 Vehicle to Pedestrian (V2P)

We Investigated threats and vulnerabilities related to cooperative communication with Ve-
hicle to everything (V2X) and Vehicle to Pedestrian (V2P) interaction. We studied threats
and vulnerabilities related to V2X cooperative communication. V2X communication meth-
ods provide significant solutions for autonomous vehicles’ perception and awareness. At
the same time, it highlights important security concerns based on the form of communi-
cation in use. The information shared in this type of network is used in many automated
driving tasks e.g., localization, decision-making, planning, and control. Therefore, attacks
can change those tasks by manipulating the exchanged information which might lead to
undesirable or hazardous driving behaviour. In [312], cooperative communication and
sensing is tested for security threats in a connected vehicle stream in a Cooperative Adap-
tive Cruise Control (CACC) scenario. V2V communication is done wirelessly using IEEE
802.11p and used to share vital longitudinal control information among vehicles in a pla-
toon setting. In this study, different attack surfaces are analysed with attacking methods
like message falsification, spoofing, replay, jamming, eavesdropping, and tampering that
are resulting in CACC instabilities and rear-end collisions. A study of different attack mod-
els and attack surfaces for autonomous automated vehicles and cooperative automated
vehicles is conducted in [309]. In this work, threats and vulnerabilities related to V2I and
V2V communication are identified for attack surfaces, such as infrastructure Roadside
Units, security systems authority, and other vehicles to name a few, and assessed based
on criteria that include means, feasibility, and severity of the attacks. The research work
done by [715] explores most of the threats and vulnerabilities for autonomous and con-
nected vehicles in the literature highlighting the attack types and knowledge gaps that
are related to vehicles performing V2I and V2V communication in addition to different
types of attacks on sensors and physical devices. Similar research is done in recent and
more comprehensive studies by [716], [717] and [718] where threats and attack types
are categorised based on the form of communication network that the autonomous vehi-
cle utilises. Vulnerabilities of V2X communication technologies such as Vehicular Ad-hoc
Network (VANET), which uses Dedicated Short-Range Communications (DSRC), are dis-
cussed in these studies with respect to its specifications and effects.

The purpose of V2P communication is to make Vulnerable Road Users (VRUs) and au-
tomated vehicles safer for all the stakeholders in the environment. VRUs include pedes-
trians, cyclists, and motorized two-wheelers. According to IRTAD, there were many fa-
talities of VRUs in 2017 [719]. Multiple works have been done to improve the safety of
the VRUs. V2X is one such safety feature. V2X means vehicle to everything coopera-
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Figure 13: Direct Vs Indirect Communication Methods [720]

tive communication. It includes vehicle-to-vehicle V2V, vehicle-to-infrastructure V2I, and
vehicle-to-pedestrian V2P cooperative communication. Since the focus here is on V2P,
we will limit ourselves to threats and vulnerabilities related to V2P communication.

V2P system architecture for communication can be direct or indirect, simplex, half duplex,
and full duplex Figure 13. For communication, we need transceivers on VRUs and vehicles
and infrastructure if that is the chosen method for communication. The data transmitted
is the location and speed of VRUs, which helps the vehicle detect, track and predict the
trajectory of VRUs and then take collision avoidance maneuvers if necessary.

Due to the mode of communication established, V2P suffers from several vulnerabilities
and threats. As for vulnerabilities, we have network congestion. as the number of VRUs
and automated vehicles increases, network congestion can happen. Issue of network
congestion is mentioned in [721]. To solve network congestion, methods such as using
communication in simplex mode [722] clustering of VRUs [720] and transmission only
when the threat of collision is predicted [721].

Another vulnerability is errors in location information, also called location accuracy. Loca-
tion information is obtained by and large through GPS receivers. Other methods exist, but
they are either not practical or cannot be deployed on a large scale. errors can be in range
of anywhere between 3-50 meters depending on where is the GPS receiver (Urban/Rural),
weather conditions clouds etc. [[722],[723],[724]]. Some efforts have been made to im-
prove accuracy using Kalman filtering [725], and some other methods that give high accu-
racy [726]. Also, some things noteworthy here is that altitude information is critical when
predicting trajectory. Current methods will predict a collision even when there is an over-
pass, and there is no chance of collision. Furthermore, some solutions to ignore GPS
information if it has a high amount of error have also been developed. Entropy is used
to assess the reliability of position information [727]. In this research, Kalman filtering-
based data fusion is used to track, predict and monitor the location accuracy of HATS. An
entropy-based metric is used to assess the reliability of the information. In another similar
research, [728] multiple targets must be tracked with multiple dynamic sensing agents.
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Mobile sensing agents plan their motion so that tracking can be efficient and accurate. An
entropy-based cost function is utilized to reject information with an unacceptable variance.

In [725] a scenario is established where three types of vehicles exist on a highway. Namely,
fully equipped, partially equipped, and not-equipped. A fully-equipped vehicle has local
sensors and communication capability. In contrast, a partially-equipped vehicle can only
communicate, and a not-equipped vehicle cannot communicate and does not have local
sensors. The objective is to maintain a tracking list of all the vehicles present in the sce-
nario with a tracking list in the partially and fully equipped vehicles. A Kalman Filter (KF)
is used for data fusion and correction, and a covariance matrix generated through KF is
used to measure the system’s entropy. Data is rejected and considered unreliable if the
entropy is beyond a threshold. This is used to determine location of occluded pedestrians
in ”occupancy grid”
In case pedestrians are occluded, several methods are utilized to detect a pedestrian. In
one method, using off-camera on the streets in an industrial area is used to detect the
pedestrians through WiFi [729]. However, this solution is costly and not scalable. Another
method by [730] utilizes software-defined radio to transmit the position of pedestrians that,
in turn, is also very expensive as dedicated DSRC modules are too expensive. In [550]
802.11 b/g/n communication method is used so that HAVs can receive position information
of occluded pedestrians, and the data is fused with LIDAR to get accurate results. How-
ever, this solution is also too expensive and not scalable. Currently, we do not have a vast
network of WiFi routers in the road infrastructure. [731] used 3G/WLAN to communicate
pedestrian information to the vehicle. However, it was not fast enough that the problem
could become scalable and choke the network if the number of vehicles or pedestrians
increased. With 4G/LTE and 5G, pedestrians can send their position information, and
the communication modules are affordable. We suggest this communication protocol for
sharing pedestrian location information with the vehicle. We have assumed all pedestri-
ans have cell phones with GPS sensors available for pedestrian localization. The problem
with GPS sensors is that it suffers from Non-Line of Sight (NLOS) in urban areas due to
high-rise buildings and can have a high amount of position, navigation, and timing errors,
which can have errors up to 50 meters. Also, GPS transmitting frequency can be easily
generated, and fake information can be generated to misguide the sensor, resulting in
accidents or unnecessary collision avoidance measures from the ego vehicle.

As many protocols can be used for communication with V2P. Each protocol have its pros
and cons, such as WiFi and 4G/5G communication [732] and [733]. Standardization is
required. Standardization of V2P protocols will pave the way for quick adaptation of V2P
protocols in the real world.

As for threats, communication protocols can suffer from a wide range of attacks, such
as spoofing, tampering, repudiation, information disclosure, denial of service, and eleva-
tion of privilege. These attacks are also known as the STRIDE model [734]. In another
research, [735], a complete threat model is presented to show possible threats and mit-
igation strategies. Mitigation strategies proposed are encrypted network protocols such
as HTTPS and TLS, packet filtering, authentication, and others. However, these methods
will increase latency within the network and expense for deploying the infrastructure re-
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quired to implement V2P protocols. It is essential to mention that such threats are already
identified in the previous sections of this report. However, they are significant to discuss
from the perspective of threats related to V2P communication.

Some open research problems include but are not limited to 3D localization in V2P sys-
tems. Currently, there is no V2P protocol that is deployed in the real world on a large
scale to observe the performance of automated vehicles. Limitations in tracking due to
V2P communication protocol are unique as factors such as Time To Collision (TTC) and
the nature of collision are unique for V2P systems and need to be explored. Integrating
V2P with Geographic Information System (GIS) will also enable AVs to be cautious near
an area where VRUs are expected. Furthermore, security-enhancing methods for threat
mitigation need to be improved, as current methods might stall communication or delay
communication which might result in collisions. Particular details of threats and vulnera-
bilities are mentioned in Table 8,9, and 10
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5 Survey on Multisensor Fusion Localization: methods,
attacks, detection and mitigation strategies

5.1 Introduction

Multisensor fusion is the process of combining information from multiple sensors to pro-
duce a more accurate and comprehensive understanding of a situation or environment. In
the context of security and defense, this can be used to improve the accuracy of surveil-
lance and detection systems, for example by combining data from GNSS, INS, radar,
cameras, and other sensors to track and identify potential threats.

Stealthy methods for attacking multisensor fusion systems involve techniques that aim to
evade or deceive these systems without being detected. By disrupting or manipulating
the data from one or more of these sources, an attacker could potentially create confu-
sion or uncertainty in the fused data, making it more difficult for the system to accurately
track or identify potential threats. As such, it is important for designers and operators of
multisensor fusion systems to be aware of these potential attack vectors and take steps
to both detect and mitigate these threats.

This literature review focuses on analyzing multi-sensor fusion strategies, attacks, detec-
tion and mitigation mechanisms as found in the literature focusing on ground and aerial
vehicles.

5.2 Multisensor fusion for localization

Modern Positioning, Navigation, and Timing (PNT) frameworks are extensively depen-
dent on Global Navigation Satellite Systems (GNSS). Concurrently, GNSS-based PNT
systems are progressively becoming more vulnerable to both accidental and intentional
Radio Frequency (RF) interference. Specifically, with technology continually advancing
and hardware costs reducing, minor efforts can significantly disrupt the standard function-
ing of nearly all PNT systems. This presents a significant threat to autonomous transport
systems that depend on precise PNT.

With the expansion of communication capabilities, a cluster of vehicles operating in close
proximity can readily exchange data. This allows for positioning and navigation based on
a collectively computed navigation solution, often referred to as collaborative navigation.
This potentially leads to a more accurate and dependable operation.

The utilization of sensors in autonomous vehicles presents potential risks when they are
subjected to malicious manipulation or disruption. For instance, the GPS system, used for
route identification, can be targeted by attackers through spoofing and jamming attacks.
Spoofing involves the transmission of fabricated signals that deceive the GPS receiver,
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leading the vehicle in the wrong direction. On the other hand, jamming entails overpower-
ing GPS signals, preventing the autonomous vehicle from receiving accurate positioning
information.

The LiDAR system, constantly active in perceiving lanes, obstacles, and distances, is also
vulnerable to attacks. Attackers can compromise LiDAR by transmitting spurious signals
via a transceiver and introducing fake obstacles along the vehicle’s intended path. This
manipulation can cause significant misperception and jeopardize safety.

Furthermore, hackers can launch attacks on cameras used for obstacle detection, lane
detection, and sign recognition. By directly targeting the cameras with laser light, attackers
can blind the sensors, rendering them incapable of performing their intended functions.
Such attacks can result in accidents on the road.

This review explores in detail the algorithms for MSF-based localization, cyber-physical
attacks, detection and mitigation strategies. It also presents an evaluation of different
standard-based approaches from Safety Engineering that can be used in addition to the
aforementioned methods.

5.2.1 Background

Multisensor fusion localization design is a common approach that allows to fuse informa-
tion from multiple independent sensors, such as GNSS, INS, LiDAR, etc. By combining
data from multiple sensors, it is possible to overcome the limitations of individual sensors
and improve the accuracy and reliability of the localization estimates [736, 737, 738, 739,
740, 741].

We refer to the system model in [742], that considers that the plan dynamics include a
general model fault. This general model fault includes actuator faults, sensor faults and
external attacks.

s(k + 1) = As(k) + Bu(k) + Bafa(k) + η1(k), (1)
y(k) = Cs(k) + Bsfs(k) + η2(k) (2)

Without loss of generality, we consider a general model of the 2D motion of a ground,
maritime, or aerial vehicle, and model each vehicle as a discrete-time stochastic linear
system with Gaussian noise. Thus, the state s(k) = [px(k), vx(k), py(k), vy(k)]

⊤ ∈ R4 rep-
resents the position poss = [px, py]

⊤ and velocity vels = [vx, vy]
⊤ of the vehicle in the 2D

plane. The instantaneous velocity of the vehicle at any given time is vs = ||vels||. The
input consists of the accelerations in the 2D plane u(k) = [ax(k), ay(k)]

T ∈ R2, with instan-
taneous acceleration a =

√
a2x + a2y. The output y(k) represents the sensor or sensors

measurement.
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Figure 14: Cyber-attack detection and mitigation mechanism for the vehicle

Consider that the acceleration measurement by the internal plant model, INS/IMU has
noise η1 ∼ N (0,Γ1) and the sensor(s) measurement noise is η2 ∼ N (0,Γ2). The attack
sequences fa(k) and fs(k) are injected into the actuators and sensors of the system, re-
spectively, and Ba, Bf are the corresponding matrices of appropriate dimensions.

Then, the workflow for the attack and detection follows as in Figure 14. The attacker
inputs the actuator or sensor attack sequences fa(k) and fs(k) into the network layer of
the system to attack actuators and/or sensors. Then, the output measurements of the
sensors are sent through the network layer to the state estimator. The location estimates
from each sensor are combined using a fusion algorithm, such as a Kalman filter, particle
filter, weighted average or a maximum a posteriori, to provide a more accurate and robust
estimate of the object’s location. The output of this estimation is send to the detection
mechanism that compares against previous outputs of the system, previous estimations or
calculates the covariance in the evolution of the output, and identifies whether the system
is under attack. If it is, an alarm is triggered and a mitigation strategy may be incorporated
to compensate for the attack.

When having multiple sensors, it is usual to have more than one estimation method and
detector. The compensation is then done by selecting the output of the estimate algorithms
that fuse the information from the sensors that are not under attack.

5.3 Taxonomy

The proposed taxonomy for this literature review attempts to identify the most important
characteristics of the multisensor fusion-based localization algorithms and attack detection
as follows:

• MSF estimation methods for localization: methods proposed by researchers to esti-
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(a) Distribution by year of publication. (b) Distribution by type of publication

Figure 15: Overview of the reviewed works.

mate the location of a vehicle or group of vehicles.

• Cyber-physical attacks overview: types of attacks that can interfere with the normal
operation. We review types of attacks based on stealthiness and objective.

– Stealthiness: these attacks can be covert or overt with a subclassification for each.
– Objective: we revise different types of attacks depending on the goal of the attacker.

• Attack detection: statistical methods and optimization based methods to identify when
the system is under attack. This includes detecting the source of the attack and trigger
an alarm or a mitgation strategy.

• Mitigation strategies: overview of approaches in the literature to react when an attack
is detected.

• Risk assessment strategies: approaches to qualitatively and quantitatively assess
safety for autonomous systems.

Around 90 papers were reviewed, additional references come from the press, books, dis-
sertations, standards or testing procedures released by state agencies. From the reviewed
papers, 30% come from either IEEE journals or conference proceedings, and 11.1% come
from other type of conference proceedings and 58.9% are from other journals as shown
in Figure 15b.

We have placed more emphasis in recent work, with 88% of the reviewed works published
in the last decade. A distribution of the years and number of works reviewed is shown in
Figure 15a.
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5.4 MSF estimation methods for localization

In a system that has multiple sensors, each sensor will have its own unique measurement
characteristics, error, biases and noise. Hence, the measurements from different sensors
are not necessarily consistent with each other. Furthermore, they may measure differ-
ent variables (distance, angle, speed) that are related to localization, but do not directly
provide it. Then, using estimation methods allows to optimally combine the data from the
sensors and achieve the most accurate location estimation possible. The purpose of es-
timation methods is to take the measurements of the sensors along with a model of the
system dynamics and the statistical properties of the sensors’ errors and biases, and pro-
vide the best estimate of the system’s state, which includes its location. Some of the most
common estimation methods are the following.

• Kalman filtering: This is a recursive algorithm that uses a statistical model to estimate the
state of a system based on noisy, incomplete, or uncertain data from multiple sources.
It is commonly used in sensor fusion for localization because it can effectively combine
data from multiple sensors and account for errors or uncertainties in the data.

– Linear Kalman Filter: this is a closed-form solution to the linear Gaussian filtering
problem that requires to assume that the model is a linear and Gaussian. By simplyf-
ing the vehicle motion to a linear model, a good estimate of the localization is obtained
in [743, 744, 745, 746, 747, 748, 749]. These works perform fusion of IMU/INS infor-
mation and GPS/GNSS data.

– Extended Kalman filtering: This is a variation of Kalman filtering that is used when
the system being modeled is nonlinear. It uses a linear approximation of the nonlinear
system to estimate the state of the system based on the data from the sensors. EKF
is prominently featured in about 50% of the reviewed works, often in combination
with other supplementary techniques. The advantage of EKF over KF is that it can
handle nonlinearities in the system, and the advantage of EKF over UKF, it that it is
still relatively simple to implement [750, 751, 752, 753, 754, 755, 756, 757].

– Unscented Kalman filtering: This is a variation of Kalman filtering that is used when
the system being modeled is nonlinear, but the nonlinearities are not well-known or
cannot be accurately modeled. It uses a set of carefully chosen points, or sigma
points, to propagate the state of the system through the nonlinearities and estimate
the state of the system based on the data from the sensors [758, 759, 760].

– Modifications to KF, EKF and UKF: Among the several variants of Kalman Filter are
the switching Kalman Filter [761], iterative EKF [762], interactive multiple model with
EKF [763], error state KF with delay handing [743].

• Particle filtering: This is a Monte Carlo-based algorithm that uses a set of weighted
particles to represent the state of a system. It can be used to estimate the position of an
object or system by updating the particles based on the data from the sensors, and then
using the weighted particles to compute the most likely position of the object or system.
This method has proved its effectiveness in addressing the bias introduced by GPS in

102



Literature Review of PNT and GNSS Threats and Vulnerabilities to HATS

[764, 765]. A particle filter that includes fusion with probabilistic maps for changing ODD
conditions is also proposed in [766]

• Graph-based optimization: This is a technique that represents the localization problem
as a graph, where the nodes of the graph represent the sensors and the edges represent
the relationships or constraints between the sensors. The goal of the optimization is
then to find the best possible configuration of the nodes on the graph that satisfies the
constraints and produces an accurate estimate of the object’s position. Mascaro et al.
proposes to use this method to fuse the visual inertial odometry poses and the globally
referenced positions to infer the global localization of UAVs in real-time [767]. In [768],
an asynchronous graph optimization method is proposed to incorporate sensors that
operate at different sampling rates.

• Machine learning-based localization: This is a technique that uses machine learn-
ing algorithms to learn from data and improve the accuracy of the localization estimate.
It can be used to learn the relationships between the data from the sensors and the
position of the object or system, and can be particularly effective at handling complex,
nonlinear localization problems. For example, the A3C algorithm combined with EKF
has shown to enhance localization accuracy [756]. Another novel approach is the ap-
plication of Convolutional Neural Networks (CNN) to estimate maritime vessel positions
[769]. However, maritime and especially underwater vehicles face additional challenges
due to the lack of GNSS signal underwater. Zhao et al. [770] leverages a Bayesian net-
work for precise vehicle localization and road matching.

Alternative approaches to handle localization when GPS is under attack include model-
ing localization error based on probabilities [771], voxel-based matching [772], and using
EKF with alternative sensors like IMU+Camera [736] or IMU+LiDAR [737]. Cooperative
localization by leveraging GPS and V2V/V2I shows robust performance for localization in
[773]. A particle filter estimator is combined with a CNN for increased UAV localization
accuracy in [774].

Methods incorporating additional sensors for localization often employ variations of the
Kalman Filter like EKF or UKF, usually in combination with another method to fuse infor-
mation from cameras [775], LiDAR [776] or maps [777]. When LiDAR and no GNSS/INS
are involved, probabilistic state estimators are usually used to fuse wheel odometry data
and images from a monocular camera with a predefined map [778, 779]. A summary of
the combination of sensors used per MSF estimation method is given in Table 11.

5.5 Cyber-physical attacks overview

In the context of attacks, the localization stack of the vehicles is often targeted. We focus
on threats targeted toward the sensors, actuators and controllers of the vehicles, namely,
their cyber-physical layer. There are also physical attacks that include physically dam-
aging or disabling sensors or placing obstacles in the environment that could affect per-
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Table 11: Commonly used MSF methods and associated sensors.

Reference Sensors for localization Cooperative Type vehicle MSF
GNSS INS IMU Radar Lidar Camera Map V2I/V2V Odometer

[766] Levinson (2011) ✓ – ✓ – ✓ – ✓ – – – PF
[764] Jo (2013) ✓ – ✓ – – – ✓ – – – PF
[780] Carson (2016) ✓ – – – – – – – – ✓ Cooperative DR
[781] Hardy (2016) – ✓ – ✓ – ✓ – – – ✓ EKF, UKF
[763] Glavine (2018) ✓ ✓ – – – – – – – – EKF
[743] Wan (2018) ✓ – ✓ – ✓ – – – – – EKF
[778] Bürki (2019) – – – – – ✓ ✓ – ✓ – Probabilistic
[782] Liu (2019) ✓ – ✓ – ✓ – – – – – EKF
[738] Shen (2020) ✓ ✓ – – ✓ – – – – – EKF
[769] Grelsson (2020) – – – – – ✓ ✓ – – – ML-based
[783] De Miguel (2020) ✓ – – – ✓ – ✓ – – – Probabilistic
[779] Cao (2020) – – – – ✓ – ✓ – – – Graph optimization
[762] Liu (2021) – – ✓ – – ✓ – – – – ML-based, EKF
[756] Zhang (2021) ✓ – – – – – – – – – RL-based, EKF
[784] Yousuf (2021) ✓ ✓ – – – – – – ✓ – ML-based, KF
[777] Viana (2021) ✓ ✓ – – ✓ – ✓ – ✓ – NDT-EKF
[785] Zahedian (2021) – – – – – ✓ – – – – KF
[786] Ding (2021) ✓ – – – – ✓ – – – ✓ Cooperative DR
[787] Zhang (2021) ✓ – ✓ – – – – – – – EKF, UKF
[788] Wang (2021) ✓ – – – ✓ – – – – – EKF
[737] Marković (2022) – – ✓ – ✓ – – – – – EKF
[736] Yan (2022) – – ✓ – – ✓ – – – – EKF
[771] Zhang (2022) – – ✓ – – – – – – – Error modeling
[772] Shen (2022) – – ✓ – ✓ – – – – ✓ CV-based
[773] Shan (2022) ✓ – – – – – – ✓ – ✓ EKF
[775] Kim (2022) – – ✓ – ✓ – – – – – NDT-EKF
[776] Xia (2022) – – – – ✓ – ✓ – – – NDT-EKF
[755] Wu (2022) ✓ – ✓ – ✓ – – – – – EKF
[789] Afifi (2022) ✓ – – – – – – – – – FKF
[790] Torroba (2022) – – – – ✓ – – – – – SVGP
[791] Liang (2022) ✓ ✓ – – – – – – – – EKF
[792] Dares (2022) – – ✓ – ✓ – – – ✓ – EKF, UKF

ception, but we do not cover this topic. To facilitate analysis and categorization, two key
classifications are introduced: stealthiness and objective of the attack.

5.5.1 Classification based on Stealthiness

We can classify the attacks as follows according to [146]:

• Overt: these are attacks that are mostly visible and easily detectable, whose purpose
is to cause disruption and send a clear message. Types of overt attacks are Denial of
Service (DoS), their derivatives such as Distributed DoS and jamming (usually overt,
but there can be instances when it is designed to be covert). If the attack is only on the
actuators, it can only be overt as the estimation error is bounded [793].

– Denial of Service (DoS): DoS attacks prevent sensor readings from reaching the
destination, hence the sensor measurements cannot be updated and the last obser-
vation would be considered as the current one. This type of attack is implemented in
[788] and compared against False Data Injection, stealthy attack and replay attack.
Also Liu et al. [762] implements it to measure the performance of its LSTM+EKF
estimator.
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– Jamming: involves using electronic signals to interfere with or disrupt the signals
from the sensors, making it more difficult for the system to accurately estimate the
position of an object or system. GPS blockades of 10s are proposed in [777] to attack
the system with a NDT-EKF estimator.

• Covert: these are attacks that are stealthy and their purpose is to remain undetected
as their pursue the objective of infiltrating a system, gaining information or leading the
system to a malicious destination. If the attack is on the sensors, or in the sensors and
actuators, it has been shown that the estimation error can be unbounded, hence covert
[793].
FalseData Injection (FDI) is a common covert attack in networked systems. FDI attacks
are a common type of attack that aims to manipulate a system’s handling of sensor
measurements by introducing manipulated measurements into the system’s sensors,
for example in smart grids [794, 795], sensor networks [796, 797] and nonlinear systems
in general [798]. Within FDI we find specifically for localization systems of vehicles the
following subtypes:

– Spoofing: involves creating false signals or data that is designed to deceive the sen-
sors, leading the system to estimate an incorrect position for the object or system.
Spoofing is usually covert, but there can be instances when it is designed to be overt.
Furthermore, it was also shown that an attack designed with an open-loop spoof-
ing controller is more likely to stay covert than attacks produced by a closed-loop
controller [146]. According to [799] we can consider three common GNSS spoofing
techniques according to their sophistication level: simplistic, intermediate and sophis-
ticated. The works analyzed in this review belong to the simplistic (can be overt) and
intermediate level (covert), as the sophisticated spoofing attack involves using mul-
tiple receiver-spoofer devices that target the receiver from different angle and direc-
tions, and it is considered that the only successful defense against this type of attack
is cryptographic authentication [800].
A simple way of spoofing a sensor would be to insert bias as in [764]. Another method
used to design attacks for KF estimators includes introducing noise or signals that are
statistically similar to legitimate signals that are to be estimated using the KF [146,
801, 802, 803, 804]. Some robust spoofing attacks on the GNSS of aerial vehicles
are designed to evade fault detectors in the multisensor fusion filter, thereby posing a
potential single point of failure [801, 802]. The target GPS unit or receiver is deceived
in [805] by duplication or falsifying GPS signals. LiDAR spoofing attacks can process
point cloud data to add virtual obstacles or remove obstacles in real scenes [129]. In
[87], the attacker remotely disrupts a LiDAR based autonomous vehicle by generating
more object and vehicle echoes. A minimization based spoofing attack for ships via
false GPS signals is proposed in [806].

– Replay attacks: do not need any system information, but rather the attacker records
a sequence of sensor observations and replays the sequence afterwards. Since the
data comes from real recordings and satisfies the mathematical models of the ve-
hicle, it can be more deceptive than other attack methods. A LiDAR replay attack
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is proposed in [782] and a general replay attack is used for devising secure fusion
estimation in [807].

– Meaconing: consists on inserting delayed signals by intercepting and then rebroad-
casting them causing a time-drift for the sensor (usually a GNSS) [808, 805].

– Time alteration attacks: consists on altering the sensor signal by modifying its times-
tamp or changing the time propagation of the signal to the receiver [809, 805]

5.5.2 Classification based on Attack objective

For a complete takeover, according to Sathaye et al. [810], the attacker should be able
to control the speed or direction of the victim, or force it to stop (ground vehicle) or land
(aerial vehicle). Achieving the attacker’s goal largely depends on the spoofer’s capabilities
and the victim’s anti-spoofing features [805]. By grouping by attack objective, we have the
following.

• Deviating Attack: the attacker guides the victim to follow a wrong route, to prevent if
from reaching its destination, cause delays or confusion. In [738], a minimization based
function is proposed to force the ground vehicle go off-road and to go the oncoming lane.
Other works that take a similar approach for ground vehicles is [811] and for aerial vehi-
cles [810]. This last work also proposes to use a human in the loop GPS spoofer (HITL),
where the human attacker observes the UAV’s motion and manipulates the trajectory
through a human interface device.

• Targeted Attack: the attacker guides the victim to a specific destination.

– Malicious destination: when the victim arrives to the malicious destination, it would
be subject to ambush, robbery or theft. Su et al. [802] proposes a design for the resid-
ual so that UAVs are directed to a malicious destination without triggering the residual
based detector. Zeng et al. [811] proposes a stealthy attack to road navigation sys-
tems where the goal is to trigger the fake turn-by-turn navigation to guide the victim
to a wrong destination without being noticed by slightly shifting the GPS location so
that physically feasible instructions are generated. This study found that 95% of the
participants followed the navigation to the wrong destination without recognizing the
attack.

– Endangering: the attacker guides the victim into a dangerous situation, such as en-
tering the wrong way on a highway. The work of [738] also fits within this category.

– Destruction: the attacker sets the victim on a collision course with an obstacle or
the ground. In this case, it is challenging to make the attack stay covert, as other
subsystems of the vehicle may raise flags regarding imminent collision. Mendes et al.
[812] found that through a combination of attacks, crashing a commercial quadcopter
was possible most of the times due to their lack of security properties.
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As also noted in [813], we have found that most studies focus on defining attacks rather
than considering defense mechanisms. Hence the following two sections will explore the
challenges of attack detection and attack mitigation, which can go together, but not nec-
essarily.

5.6 Attack detection

Prior studies often overlook the full range of nonlinearities in vehicles and the adverse
effects of malicious disturbances, resulting in reduced control performance and instability
[814]. Neglecting the security measures in sensor design for autonomous vehicles is a
significant vulnerability, as cyber-attacks can compromise the safe operation of the vehicle,
possibly leading to accidents and being a menace to users.

As shown in [815] one can understand that attacks are designed in general for cyber-
physical systems, and similar types of attacks can affect power grids, vehicles, network
systems, etc. Then, one can borrow methods from those other fields too.

Outlined in [742], a residual signal can be produced by utilizing the input vector u(k) and
output vector y(k), such that r(k) = g(u(k), y(k)). Typically, this residual signal r(k) repre-
sents the discrepancy between the measured output y(k) and the estimated output ŷ(k),
as expressed by the following equation:

r(k) = y(k)− ŷ(k) (3)

The residual signal exhibits the following attributes:

• Invariance Relationship: In the absence of any faults, the mean of the residual signal
E[r(k)] equals zero.

• Fault Detectability: In the presence of any faults (such as sensor or actuator attacks,
noise interference, etc.), the mean of the residual signal E[r(k)] becomes unequal to
zero.

Furthermore, if there are no cyber-attacks, the residual has a zero mean Gaussian dis-
tribution with a constant covariance matrix Σr(k) = CΣ(k)C⊤ + Γ2 and r⊤(k)Σ−1

r (k)r(k)
follows a χ2 distribution with n degrees of freedom, where E[r⊤(k)Σ−1

r (k)r(k)] = n. The di-
mension of the measurement vector y(k) coincides with dim(s(k)) := n, i.e. dim(y(k)) = n.
A general outlier detector using χ2 consists on triggering an alarm or flag when χ2 goes
above a threshold, as shown in [816, 817, 818, 797].

Then, to detect whether the system is under attack, one can use statistical hypothesis
testing methods such as the Cumulative Sum (CUSUM) [819], Compound Scalar Testing
(CST) [820], sequential probability ratio test (SPRT) [821] and generalized likelihood ratio
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(GLR) [822]. This last method was initially proposed in [823]. This statistical analysis will
be the tool for decision making (accept or reject the hypothesis will lead to raising a flag
that shows attack). Even though χ2, CUSUM, CST, SPRT and GLR detectors are effective
in detecting faults or attacks such as denial of service attacks, short-term randomized
attacks, and long-term randomized attacks, they are unable to detect statistically derived
false data injection attacks [794].

In the case that the system uses a KF estimation method, there are some commonly used
approaches for detecting false data injection attacks. In [782], the authors consider two
types of attacks: GNSS spoofing and LiDAR replay attack, and the designed detector is
based on monitoring the cumulative sum (CUSUM) of the residual, similar as proposed in
[146, 801, 802]. In the case of multi sensor fusion, it is common to design different com-
binations of EKF and the CUSUM detector, so that the attacked sensor can be identified,
as shown in [782, 824, 788].

A linear filter is proposed to detect the sensor shift or shift in the system matrix A and the
control matrix B. Then, the gain of such filter is modified to make the residue of the filter
more sensitive to a shift [825, 826]. Roysdon et al. [827] considers MSF between GPS
and INS, and proposed to use a sliding window filter for outlier detection and elimination.
Some authors propose other models to detect cyber-attacks. For example, [828] uses the
error vector to detect cyber-attacks, with the error value of the nth EKF directly.

Even though using EKF and its derivatives for estimation is the most and used method as
it provides robustness in performance, they are subject to cybersecurity attacks and the
attack defenses and mitigation strategies is still a developing subject. Some works that
look into this topic are in adjacent fields to transportation, mostly in the area of networked
nonlinear systems. For example, in [829] the authors propose modified particle filters for
detection of false data injection attacks. A similar method is proposed in [830], but the
application is in automatic generation control systems.

Methods for detecting cyber-attacks on UAS include monitoring error vectors of Extended
Kalman Filters (EKF) to compare sensor values [814], combining different detection strate-
gies for spoofing attacks [824], and monitoring discrepancies between GNSS-derived
measurements and corresponding sensor readings [831].

Other methods resort to using tools from anomaly detection. In [808] the authors use
a Support Vector Machine (SVM) approach to detect GPS spoofing. In the case of a
meaconing attack, some authors suggest to monitor the receiver’s clock drift [832].

5.7 Mitigation strategies

It has been shown that combining several spoofing detection methods leads to a more
robust detection, furthermore, one can identify also different kinds of attack, such as in
[824]. In this case, the mitigation method is to use the sensor fusion approach just using
the sensors that are not being attacked, i.e. if the detector finds that the GPS is being
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attacked, use the EKF that fuses LiDAR and IMU information.

Some localization algorithms include anti-spoofing or anti-attacks safeguards. For ex-
ample, in [791] the authors propose an anti-spoofing Kalman filter for GPS/INS sensor
fusion. However, this work requires a pregenerated map of the environment, obtained
using SLAM. Applications of this method were initially used for mobile robots, and lately
for automated vehicles.

UKF-based pose estimation methods have shown promise in handling challenges such
as bandwidth constraints and randomly occurring deception attacks [833, 807, 804] with
the only downside of being more complex to implement.

In [834], the author proposes a probabilistic map that increases the robustness of the
localization using particle filters when having the availability of GPS, IMU and a map.

A common anti-spoofing method for GPS information is usually carried out by testing the
variance of the error in the measurement from one timestep to the next one. In [791] for
example, this method was used. However, as shown in this work, small increases in the
spoofing error are not detected by this method and can lead to cumulative errors in the
total time of simulation.

Mitigation strategies for replay attacks include robust filtering methods, such as the recur-
sive distributed Kalman filter that is proposed in [807].

Other studies have focused on studying the advantages of collaborative navigation for
detection and mitigation of GNSS-based PNT anomalies. For example, in [835] an outlier
detection method is used. Minimum Norm Least Squares Solution (MINOLESS) is se-
lected in this study because the solution norm is minimized among all possible (biased)
solutions. By incorporating this solution, the collaborative navigation has shown to be able
to maintain the differences to the reference solution to within 0.2 m for the biased case,
0.5 m for the noisy case and 3 m for the anchor case.

Moreover, multisensor information fusion algorithms such as Gaussian Processes, evi-
dence theory, and the improved CNN algorithm potentially enhance estimation accuracy
and robustness against cyber attacks [836, 837].

5.8 Risk assessment strategies

There are several approaches to qualitatively and quantitatively assess safety, many of
them are founded on standards that dictate the expected behavior of systems under cer-
tain configurations. The Road Vehicle Functional Safety standard (ISO 26262) [838] con-
siders that hazards that are induced by software or hardware failures. The Road Vehi-
cle Safety of the Intended Functionality standard (SOTIF ISO/PAS 21448) [839] seeks
to identify performance shortcomings in ADAS systems that may occur not because of a
system failure but rather due to limitations in the nominal system performance. A recently
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introduced standard, the UL4600: Autonomous Vehicle Safety Standard [840], consists
of safety definitions for autonomous systems specifically. Fig. 16 shows the three main
categories for safety assessment: Systems Engineering methods, formal methods, and
probabilistic methods. These methods can also be classified according to their outcome,
such as Hazard analysis, Safety Case Specification, and Risk Assessment methods.

Root Cause Analysis

HAZOP

STPA

FTA FMEA

Systems 
Engineering

Reachability
Analysis

Formal methods

Rule-based
systems

Dynamic Probabilistic
Risk Assessment

Sampling

Adaptive
sampling

Importance
sampling

Monte Carlo 
sampling

Backtracking process
algorithm

Uniform 
sampling

Signal Temporal Logic

Hazard analysis Risk assessment

Safety case 
specification

Safety assessment Probabilistic
methods

Figure 16: Some safety assessment methods explored. Notice that the main areas: Systems Engineering,
Formal Methods and Probabilistic Methods comprehend a series of analysis procedures that have different
goals. Systems Engineering Methods are used for Hazard analysis, Formal methods and Sampling-based
methods are used to build the safety case specification and some Probabilistic methods are used for risk
assessment.

Systems Safety Engineering methods provide systematic methodologies to perform Haz-
ard Analysis. The traditional Fault Tree Analysis (FTA) and Failure Modes and Effects
Analysis (FMEA) consider that hazards result from chain events caused by individual
components’ failures propagating throughout the system. The difference between both
methods is that FMEA uses a bottom-up cause-effect model while FTA is an top-down
effect-cause approach. Hazard and Operability Study (HAZOP) is a qualitative top-down
hazard analysis method for complex systems that consists of evaluating each component
in a chain process and finding potential situations that would provoke hazards. System
Theoretic Process Analysis (STPA) [841] provides a systematic process to evaluate inter-
faces between system components, controllers and people, using process feedback loops,
functional control diagram, system requirements, hazard scenarios, safety constraints and
safety requirements.

Previous studies have shown that the combination of two or more hazard analysis methods
leads to better identification of potential hazards and mitigation strategies [842, 843, 844,
845].

The application of hazard analysis techniques to an automotive PNT subsystem is not
new. Brewer et al. [846] presented a very detailed STPA+HAZOP+FMEA analysis for a
generic automated lane centering system. Similarly, Becker et al. [842], developed the
same analysis for a generic SAE level-3 highway chauffeur system, including lane chang-
ing and lane centering maneuvers, while Koelln et al. [847] presents the STPA comparison

110



Literature Review of PNT and GNSS Threats and Vulnerabilities to HATS

in general for a vehicle SAE level-4 and level-5. Mahajan et al. [844] presents an STPA
for a lane-keeping assistance system, while Abdulkhaleq et al. [848] applies STPA to the
lane change functionality of a cruising chauffeur. Macher et al. [849] introduced a security
aware hazard and risk analysis method whose focus is in newer electronic devices. It is a
combination of the automotive Hazard Analysis and Risk Approach (HARA) and the secu-
rity domain STRIDE approach that allows identifying computer security threats. Sulaman
[850] makes a comparison of the outputs of a forward collision avoidance (FCA) system
using FMEA and STPA. Unlike other works mentioned in this section, the analysis is car-
ried out independently using each hazard analysis method, and the outputs are compared
qualitatively. However, as explained in [847, 842], it is more effective to combine methods
instead of using them independently.

Capito et al. developed a workflow pipeline that can be used for risk assessment using
hazard analysis methods, as shown in Fig. 17 [851]. Here, the analysis goes directly from
the item definition to the risk assessment without further iteration.

Figure 17: Safety Analysis and Requirements Development Process

The analysis consists of systematically performing a detailed expert-based evaluation of
every component of the system using the hazard analysis tools described above. The out-
put of the analysis is a series of tables that describe the potential level hazards, their ASIL
rating for risk assessment, safety goals, triggering events and mitigation strategies [851].
The disadvantage of expert-based methods is that it is possible to generate very differ-
ent outcomes depending on the extent of the considered ODD and the knowledge and
experience of the particular subject matter experts. Nevertheless, it remains a valuable
resource to find possible adversarial disturbances applied to the test-subject.

In comparison, the authors of [852] propose a Hazard Based Testing approach derived
from STPA, where the testing miles reflect hazard-based scenarios that are relevant to
the way how an ADS fails.

A comparison of the aforementioned methods is shown in 12. We can see that there
are mostly qualitative methods as quantitative methods purely from systems engineering
need to be combined with others such as formal methods. Some quantitative methods
that do not borrow from systems engineering are probabilistic risk assessment algorithms
[853, 854], fuzzy logic methods [855] and Monte Carlo approaches [856].
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Table 12: Risk assessment approaches for automated driving systems

Reference Method Quant/Qual ISO 26262 ISO/PAS 21448
STPA FTA FMEA HAZOP HARA ASIL DRA QRN

[842] Becker (2020) ✓ ✓ ✓ – – – – – Qualitative ✓ ✓
[857] Capito (2021) ✓ – ✓ ✓ – ✓ – – Qualitative ✓ ✓
[858] Warg (2016) – ✓ – – ✓ – – – Qualitative ✓ –
[859] Stolte (2017) – – – – ✓ ✓ – – Qualitative ✓ –
[860] Bagschik (2016) – – – ✓ – ✓ – – Qualitative ✓ –
[861] Wardzinski (2008) – – – – – – ✓ – Qualitative – –
[862] Khastgir (2017) – – – – ✓ ✓ – – Qualitative ✓ ✓
[863] Warg (2020) – – – – ✓ – – ✓ Quantitative ✓ ✓
[864] Puch (2018) – ✓ – – – – ✓ – Quantitative – –

5.9 Discussion

This document provides a general review of methods for locating, attacking, and mitigat-
ing threats to ground, aerial, and maritime vehicles. However, additional considerations,
unique to each vehicle type due to their operational design domains, are beyond the scope
of this review.

The operating environment presents distinct vulnerabilities. Ground vehicles are suscep-
tible to physical attacks, including tampering with sensors or cameras. Aerial vehicles
may succumb to signal interference, causing loss of control or crashes. Maritime vehicles
may experience attacks on their propulsion system, such as clogging of their water intake.
Further, while 2D motion is an adequate approximation for ground and maritime surface
vehicles, it is insufficient for aerial vehicles and maritime underwater vehicles. As noted in
[810], GNSS spoofing alone cannot alter the altitude of an aerial vehicle to force a landing,
as most such vehicles rely on non-GNSS sensors (rangefinders, downward-facing cam-
eras, barometers) for altitude measurement. These sensors’ immunity to GNSS spoofing
presents a significant challenge for attackers.

Sensor configurations also vary among vehicles. Ground vehicles heavily depend on Li-
DARs, susceptible to laser interference, or cameras, vulnerable to spoofed images. Aerial
and maritime vehicles may contend with sensors that depend on environmental factors,
such as barometric pressure sensors disrupted by weather or altitude changes, or sonar
sensors disrupted by waterborne debris.

Risk assessment strategies should take into account that different types of vehicles may
fall under various regulatory frameworks or security standards, influencing the relevant
attacks and required mitigation strategies.

Furthermore, the medium for data storage and transmission used by vehicles deserves
consideration. For instance, ground vehicles may store data locally, whereas an aerial
vehicle might transmit this data in real-time to a remote server.

Overall, this research area is rapidly expanding, driven by increasing sensor use in ground,
aerial, and maritime vehicles and escalating levels of vehicle automation.
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